The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Un algorithme permettant de trouver la sectionnement optimal pour les treillis sectionnés par rapport à des critères d'optimalité distincts a été présenté par Lafourcade et Vardy. Dans cet article, pour les codes de blocs linéaires, nous donnons une méthode directe pour trouver la sectionnement optimal lorsque le critère d'optimalité est choisi comme le nombre total |E| des bords, l'indice d'expansion |E| - |V|+1, ou la quantité 2|E| - |V|+1, en utilisant uniquement les dimensions des sous-codes passés et futurs. Une méthode plus concrète pour déterminer la sectionalisation optimale est donnée pour les codes de Reed-Muller avec l'ordre des coordonnées lexicographiques naturelles.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Yuansheng TANG, Toru FUJIWARA, Tadao KASAMI, "The Optimal Sectionalized Trellises for the Generalized Version of Viterbi Algorithm of Linear Block Codes and Its Application to Reed-Muller Codes" in IEICE TRANSACTIONS on Fundamentals,
vol. E83-A, no. 11, pp. 2329-2340, November 2000, doi: .
Abstract: An algorithm for finding the optimal sectionalization for sectionalized trellises with respect to distinct optimality criterions was presented by Lafourcade and Vardy. In this paper, for linear block codes, we give a direct method for finding the optimal sectionalization when the optimality criterion is chosen as the total number |E| of the edges, the expansion index |E|-|V|+1, or the quantity 2|E|-|V|+1, only using the dimensions of the past and future sub-codes. A more concrete method for determining the optimal sectionalization is given for the Reed-Muller codes with the natural lexicographic coordinate ordering.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e83-a_11_2329/_p
Copier
@ARTICLE{e83-a_11_2329,
author={Yuansheng TANG, Toru FUJIWARA, Tadao KASAMI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={The Optimal Sectionalized Trellises for the Generalized Version of Viterbi Algorithm of Linear Block Codes and Its Application to Reed-Muller Codes},
year={2000},
volume={E83-A},
number={11},
pages={2329-2340},
abstract={An algorithm for finding the optimal sectionalization for sectionalized trellises with respect to distinct optimality criterions was presented by Lafourcade and Vardy. In this paper, for linear block codes, we give a direct method for finding the optimal sectionalization when the optimality criterion is chosen as the total number |E| of the edges, the expansion index |E|-|V|+1, or the quantity 2|E|-|V|+1, only using the dimensions of the past and future sub-codes. A more concrete method for determining the optimal sectionalization is given for the Reed-Muller codes with the natural lexicographic coordinate ordering.},
keywords={},
doi={},
ISSN={},
month={November},}
Copier
TY - JOUR
TI - The Optimal Sectionalized Trellises for the Generalized Version of Viterbi Algorithm of Linear Block Codes and Its Application to Reed-Muller Codes
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2329
EP - 2340
AU - Yuansheng TANG
AU - Toru FUJIWARA
AU - Tadao KASAMI
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E83-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 2000
AB - An algorithm for finding the optimal sectionalization for sectionalized trellises with respect to distinct optimality criterions was presented by Lafourcade and Vardy. In this paper, for linear block codes, we give a direct method for finding the optimal sectionalization when the optimality criterion is chosen as the total number |E| of the edges, the expansion index |E|-|V|+1, or the quantity 2|E|-|V|+1, only using the dimensions of the past and future sub-codes. A more concrete method for determining the optimal sectionalization is given for the Reed-Muller codes with the natural lexicographic coordinate ordering.
ER -