The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article traite de la factorisation des matrices d'ordre Hadamard complexes de type fonction courbée. pn avec un premier p. Il est montré que toute matrice Hadamard complexe de type fonction courbée a une factorisation symétrique, qui peut être exprimée par le produit de n matrices d'ordre pn avec pn + 1 éléments non nuls, une matrice d'ordre pn avec pn les non nuls, et les n matrices, tout au plus. Comme application, un corrélateur pour les communications à spectre étalé M-aire a été proposé, qui peut être simplement construit par les mêmes circuits avec des multiplicateurs réduits, avant et arrière.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Shinya MATSUFUJI, Naoki SUEHIRO, "Symmetrical Factorization of Bent Function Type Complex Hadamard Matrices" in IEICE TRANSACTIONS on Fundamentals,
vol. E82-A, no. 12, pp. 2765-2770, December 1999, doi: .
Abstract: This paper discusses factorization of bent function type complex Hadamard matrices of order pn with a prime p. It is shown that any bent function type complex Hadamard matrix has symmetrical factorization, which can be expressed by the product of n matrices of order pn with pn+1 non-zero elements, a matrix of order pn with pn non-zero ones, and the n matrices, at most. As its application, a correlator for M-ary spread spectrum communications is successfully given, which can be simply constructed by the same circuits with reduced multiplicators, before and behind.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e82-a_12_2765/_p
Copier
@ARTICLE{e82-a_12_2765,
author={Shinya MATSUFUJI, Naoki SUEHIRO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Symmetrical Factorization of Bent Function Type Complex Hadamard Matrices},
year={1999},
volume={E82-A},
number={12},
pages={2765-2770},
abstract={This paper discusses factorization of bent function type complex Hadamard matrices of order pn with a prime p. It is shown that any bent function type complex Hadamard matrix has symmetrical factorization, which can be expressed by the product of n matrices of order pn with pn+1 non-zero elements, a matrix of order pn with pn non-zero ones, and the n matrices, at most. As its application, a correlator for M-ary spread spectrum communications is successfully given, which can be simply constructed by the same circuits with reduced multiplicators, before and behind.},
keywords={},
doi={},
ISSN={},
month={December},}
Copier
TY - JOUR
TI - Symmetrical Factorization of Bent Function Type Complex Hadamard Matrices
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2765
EP - 2770
AU - Shinya MATSUFUJI
AU - Naoki SUEHIRO
PY - 1999
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E82-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 1999
AB - This paper discusses factorization of bent function type complex Hadamard matrices of order pn with a prime p. It is shown that any bent function type complex Hadamard matrix has symmetrical factorization, which can be expressed by the product of n matrices of order pn with pn+1 non-zero elements, a matrix of order pn with pn non-zero ones, and the n matrices, at most. As its application, a correlator for M-ary spread spectrum communications is successfully given, which can be simply constructed by the same circuits with reduced multiplicators, before and behind.
ER -