The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Chez Shamir (k,n)-schéma de partage de secrets à seuil (schéma de seuil)[1], un coût de calcul élevé est nécessaire pour faire n partage et récupère le secret de k actions. Pour résoudre ce problème, plusieurs schémas à seuil rapide ont été proposés. Cependant, il n'y a pas de jeûne idéal (k,n)-schéma de seuil, où k et à la n sont arbitraires. Cet article propose un nouveau jeûne (k,n)-schéma de seuil qui utilise uniquement des opérations EXCLUSIVE-OR(XOR) pour effectuer n partage et récupère le secret de k actions. Nous prouvons que toute combinaison de k ou plusieurs participants peuvent retrouver le secret, mais chaque groupe de moins de k les participants ne peuvent obtenir aucune information sur le secret du système proposé. De plus, le système proposé est un idéal schéma de partage de secret similaire au schéma de Shamir, dans lequel chaque taille de partage est égale à celle du secret. Nous évaluons également l'efficacité du système et montrons que notre système réalise des opérations beaucoup plus rapides que celui de Shamir.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Jun KURIHARA, Shinsaku KIYOMOTO, Kazuhide FUKUSHIMA, Toshiaki TANAKA, "On a Fast (k,n)-Threshold Secret Sharing Scheme" in IEICE TRANSACTIONS on Fundamentals,
vol. E91-A, no. 9, pp. 2365-2378, September 2008, doi: 10.1093/ietfec/e91-a.9.2365.
Abstract: In Shamir's (k,n)-threshold secret sharing scheme (threshold scheme)[1], a heavy computational cost is required to make n shares and recover the secret from k shares. As a solution to this problem, several fast threshold schemes have been proposed. However, there is no fast ideal (k,n)-threshold scheme, where k and n are arbitrary. This paper proposes a new fast (k,n)-threshold scheme which uses just EXCLUSIVE-OR(XOR) operations to make n shares and recover the secret from k shares. We prove that every combination of k or more participants can recover the secret, but every group of less than k participants cannot obtain any information about the secret in the proposed scheme. Moreover, the proposed scheme is an ideal secret sharing scheme similar to Shamir's scheme, in which every bit-size of shares equals that of the secret. We also evaluate the efficiency of the scheme, and show that our scheme realizes operations that are much faster than Shamir's.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e91-a.9.2365/_p
Copier
@ARTICLE{e91-a_9_2365,
author={Jun KURIHARA, Shinsaku KIYOMOTO, Kazuhide FUKUSHIMA, Toshiaki TANAKA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={On a Fast (k,n)-Threshold Secret Sharing Scheme},
year={2008},
volume={E91-A},
number={9},
pages={2365-2378},
abstract={In Shamir's (k,n)-threshold secret sharing scheme (threshold scheme)[1], a heavy computational cost is required to make n shares and recover the secret from k shares. As a solution to this problem, several fast threshold schemes have been proposed. However, there is no fast ideal (k,n)-threshold scheme, where k and n are arbitrary. This paper proposes a new fast (k,n)-threshold scheme which uses just EXCLUSIVE-OR(XOR) operations to make n shares and recover the secret from k shares. We prove that every combination of k or more participants can recover the secret, but every group of less than k participants cannot obtain any information about the secret in the proposed scheme. Moreover, the proposed scheme is an ideal secret sharing scheme similar to Shamir's scheme, in which every bit-size of shares equals that of the secret. We also evaluate the efficiency of the scheme, and show that our scheme realizes operations that are much faster than Shamir's.},
keywords={},
doi={10.1093/ietfec/e91-a.9.2365},
ISSN={1745-1337},
month={September},}
Copier
TY - JOUR
TI - On a Fast (k,n)-Threshold Secret Sharing Scheme
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2365
EP - 2378
AU - Jun KURIHARA
AU - Shinsaku KIYOMOTO
AU - Kazuhide FUKUSHIMA
AU - Toshiaki TANAKA
PY - 2008
DO - 10.1093/ietfec/e91-a.9.2365
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E91-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2008
AB - In Shamir's (k,n)-threshold secret sharing scheme (threshold scheme)[1], a heavy computational cost is required to make n shares and recover the secret from k shares. As a solution to this problem, several fast threshold schemes have been proposed. However, there is no fast ideal (k,n)-threshold scheme, where k and n are arbitrary. This paper proposes a new fast (k,n)-threshold scheme which uses just EXCLUSIVE-OR(XOR) operations to make n shares and recover the secret from k shares. We prove that every combination of k or more participants can recover the secret, but every group of less than k participants cannot obtain any information about the secret in the proposed scheme. Moreover, the proposed scheme is an ideal secret sharing scheme similar to Shamir's scheme, in which every bit-size of shares equals that of the secret. We also evaluate the efficiency of the scheme, and show that our scheme realizes operations that are much faster than Shamir's.
ER -