The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Nous considérons une classe de systèmes à retard non linéaires avec des retards variables dans le temps, et obtenons une condition suffisante indépendante du temps pour la stabilité asymptotique globale. La condition suffisante est prouvée en construisant une fraction continue qui représente les variations des limites inférieure et supérieure de la trajectoire du système au cours du temps, et en montrant que la fraction continue converge vers le point d'équilibre du système. Les résultats de la simulation montrent la validité de la condition suffisante et illustrent que la condition suffisante est une proche approximation de la condition nécessaire et suffisante inconnue pour la stabilité asymptotique globale.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Joon-Young CHOI, "A Global Stability Analysis of a Class of Nolinear Time-Delay Systems Using Continued Fraction Property" in IEICE TRANSACTIONS on Fundamentals,
vol. E91-A, no. 5, pp. 1274-1277, May 2008, doi: 10.1093/ietfec/e91-a.5.1274.
Abstract: We consider a class of nonlinear time delay systems with time-varying delays, and achieve a time delay independent sufficient condition for the global asymptotic stability. The sufficient condition is proved by constructing a continued fraction that represents the lower and upper bound variations of the system trajectory along the current of time, and showing that the continued fraction converges to the equilibrium point of the system. The simulation results show the validity of the sufficient condition, and illustrate that the sufficient condition is a close approximation to the unknown necessary and sufficient condition for the global asymptotic stability.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e91-a.5.1274/_p
Copier
@ARTICLE{e91-a_5_1274,
author={Joon-Young CHOI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Global Stability Analysis of a Class of Nolinear Time-Delay Systems Using Continued Fraction Property},
year={2008},
volume={E91-A},
number={5},
pages={1274-1277},
abstract={We consider a class of nonlinear time delay systems with time-varying delays, and achieve a time delay independent sufficient condition for the global asymptotic stability. The sufficient condition is proved by constructing a continued fraction that represents the lower and upper bound variations of the system trajectory along the current of time, and showing that the continued fraction converges to the equilibrium point of the system. The simulation results show the validity of the sufficient condition, and illustrate that the sufficient condition is a close approximation to the unknown necessary and sufficient condition for the global asymptotic stability.},
keywords={},
doi={10.1093/ietfec/e91-a.5.1274},
ISSN={1745-1337},
month={May},}
Copier
TY - JOUR
TI - A Global Stability Analysis of a Class of Nolinear Time-Delay Systems Using Continued Fraction Property
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1274
EP - 1277
AU - Joon-Young CHOI
PY - 2008
DO - 10.1093/ietfec/e91-a.5.1274
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E91-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2008
AB - We consider a class of nonlinear time delay systems with time-varying delays, and achieve a time delay independent sufficient condition for the global asymptotic stability. The sufficient condition is proved by constructing a continued fraction that represents the lower and upper bound variations of the system trajectory along the current of time, and showing that the continued fraction converges to the equilibrium point of the system. The simulation results show the validity of the sufficient condition, and illustrate that the sufficient condition is a close approximation to the unknown necessary and sufficient condition for the global asymptotic stability.
ER -