The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
En se concentrant sur la corrélation temporelle des canaux de communication réels, un algorithme de quantification de canal basé sur la quantification vectorielle à états finis (FSVQ) est proposé. Tout d'abord, les canaux sont divisés en états finis, puis des livres de codes correspondant à chaque état sont construits, qui sont utilisés pour quantifier les canaux transférés depuis les états correspondants. De plus, la fonction de transition d'état est conçue pour assurer la synchronisation entre l'émetteur et le récepteur. L'algorithme proposé peut obtenir des performances améliorées avec la même charge de rétroaction par rapport au quantificateur de canal sans mémoire classique, sans tenir compte de l'influence de la corrélation temporelle. Les résultats de simulation vérifient l'efficacité de l'algorithme proposé.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Zhenjie FENG, Taiyi ZHANG, Erlin ZENG, "Research on Channel Quantization Algorithm of Time Correlated Channels" in IEICE TRANSACTIONS on Fundamentals,
vol. E91-A, no. 10, pp. 3063-3066, October 2008, doi: 10.1093/ietfec/e91-a.10.3063.
Abstract: Focusing on time correlation of real communication channels, a channel quantization algorithm based on finite state vector quantization (FSVQ) is proposed. Firstly channels are partitioned into finite states, then codebooks corresponding to each state are constructed, which are used to quantize channels transferred from corresponding states. Further, the state transition function is designed to ensure the synchronization between transmitter and receiver. The proposed algorithm can achieve improved performance with the same feedback load compared with classical memoryless channel quantizer without consideration of the influence of time correlation. Simulation results verify the effectiveness of the proposed algorithm.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e91-a.10.3063/_p
Copier
@ARTICLE{e91-a_10_3063,
author={Zhenjie FENG, Taiyi ZHANG, Erlin ZENG, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Research on Channel Quantization Algorithm of Time Correlated Channels},
year={2008},
volume={E91-A},
number={10},
pages={3063-3066},
abstract={Focusing on time correlation of real communication channels, a channel quantization algorithm based on finite state vector quantization (FSVQ) is proposed. Firstly channels are partitioned into finite states, then codebooks corresponding to each state are constructed, which are used to quantize channels transferred from corresponding states. Further, the state transition function is designed to ensure the synchronization between transmitter and receiver. The proposed algorithm can achieve improved performance with the same feedback load compared with classical memoryless channel quantizer without consideration of the influence of time correlation. Simulation results verify the effectiveness of the proposed algorithm.},
keywords={},
doi={10.1093/ietfec/e91-a.10.3063},
ISSN={1745-1337},
month={October},}
Copier
TY - JOUR
TI - Research on Channel Quantization Algorithm of Time Correlated Channels
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 3063
EP - 3066
AU - Zhenjie FENG
AU - Taiyi ZHANG
AU - Erlin ZENG
PY - 2008
DO - 10.1093/ietfec/e91-a.10.3063
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E91-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 2008
AB - Focusing on time correlation of real communication channels, a channel quantization algorithm based on finite state vector quantization (FSVQ) is proposed. Firstly channels are partitioned into finite states, then codebooks corresponding to each state are constructed, which are used to quantize channels transferred from corresponding states. Further, the state transition function is designed to ensure the synchronization between transmitter and receiver. The proposed algorithm can achieve improved performance with the same feedback load compared with classical memoryless channel quantizer without consideration of the influence of time correlation. Simulation results verify the effectiveness of the proposed algorithm.
ER -