The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La réduction d'échelle de la technologie CMOS a entraîné une forte amélioration des performances RF des MOSFET en vrac et SOI. Afin de réaliser un circuit RF à faible bruit, une compréhension plus approfondie des performances de bruit des MOSFET est nécessaire. Le bruit thermique est la principale source de bruit du dispositif CMOS pour les performances haute fréquence et est dominé par le bruit du canal de drain, le bruit de grille induit et leur bruit de corrélation. Dans ce travail, nous avons mesuré le paramètre de bruit RF (Fm., Rn, Γ opter) de MOSFET à nœuds de 45 nm de 5 à 15 GHz et sources de bruit et coefficients de bruit extraits P, R et C en utilisant un modèle étendu de van der Ziel. Nous avons trouvé pour la première fois ce coefficient de corrélation C diminue des valeurs positives aux valeurs négatives lorsque la longueur de grille est réduite continuellement avec une longueur de grille inférieure à 100 nm. Nous avons confirmé que le modèle de facteur de bruit de Pucel, utilisant des coefficients de bruit P, R et C, peut être considéré comme une bonne approximation même pour les MOSFET inférieurs à 50 nm. Nous avons également discuté d'un effet d'échelle des coefficients de bruit, en particulier du coefficient de bruit de corrélation. C sur le facteur de bruit minimum.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Hiroshi SHIMOMURA, Kuniyuki KAKUSHIMA, Hiroshi IWAI, "Effect of High Frequency Noise Current Sources on Noise Figure for Sub-50 nm Node MOSFETs" in IEICE TRANSACTIONS on Electronics,
vol. E93-C, no. 5, pp. 678-684, May 2010, doi: 10.1587/transele.E93.C.678.
Abstract: The downscaling of CMOS technology has resulted in strong improvement in RF performance of bulk and SOI MOSFETs. In order to realize a low-noise RF circuit, a deeper understanding of the noise performance for MOSFETs is required. Thermal noise is the main noise source of the CMOS device for high frequency performance, and is dominated by the drain channel noise, induced gate noise, and their correlation noise. In this work, we measured the RF noise parameter (Fmin, Rn, Γ opt) of 45 nm node MOSFETs from 5 to 15 GHz and extracted noise sources and noise coefficients P, R, and C by using an extended van der Ziel's model. We found, for the first time, that correlation coefficient C decreases from positive to negative values when the gate length is reduced continuously with the gate length of sub-100 nm. We confirmed that Pucel's noise figure model, using noise coefficients P, R, and C, can be considered a good approximation even for sub-50 nm MOSFETs. We also discussed a scaling effect of the noise coefficients, especially the correlation noise coefficient C on the minimum noise figure.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E93.C.678/_p
Copier
@ARTICLE{e93-c_5_678,
author={Hiroshi SHIMOMURA, Kuniyuki KAKUSHIMA, Hiroshi IWAI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Effect of High Frequency Noise Current Sources on Noise Figure for Sub-50 nm Node MOSFETs},
year={2010},
volume={E93-C},
number={5},
pages={678-684},
abstract={The downscaling of CMOS technology has resulted in strong improvement in RF performance of bulk and SOI MOSFETs. In order to realize a low-noise RF circuit, a deeper understanding of the noise performance for MOSFETs is required. Thermal noise is the main noise source of the CMOS device for high frequency performance, and is dominated by the drain channel noise, induced gate noise, and their correlation noise. In this work, we measured the RF noise parameter (Fmin, Rn, Γ opt) of 45 nm node MOSFETs from 5 to 15 GHz and extracted noise sources and noise coefficients P, R, and C by using an extended van der Ziel's model. We found, for the first time, that correlation coefficient C decreases from positive to negative values when the gate length is reduced continuously with the gate length of sub-100 nm. We confirmed that Pucel's noise figure model, using noise coefficients P, R, and C, can be considered a good approximation even for sub-50 nm MOSFETs. We also discussed a scaling effect of the noise coefficients, especially the correlation noise coefficient C on the minimum noise figure.},
keywords={},
doi={10.1587/transele.E93.C.678},
ISSN={1745-1353},
month={May},}
Copier
TY - JOUR
TI - Effect of High Frequency Noise Current Sources on Noise Figure for Sub-50 nm Node MOSFETs
T2 - IEICE TRANSACTIONS on Electronics
SP - 678
EP - 684
AU - Hiroshi SHIMOMURA
AU - Kuniyuki KAKUSHIMA
AU - Hiroshi IWAI
PY - 2010
DO - 10.1587/transele.E93.C.678
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E93-C
IS - 5
JA - IEICE TRANSACTIONS on Electronics
Y1 - May 2010
AB - The downscaling of CMOS technology has resulted in strong improvement in RF performance of bulk and SOI MOSFETs. In order to realize a low-noise RF circuit, a deeper understanding of the noise performance for MOSFETs is required. Thermal noise is the main noise source of the CMOS device for high frequency performance, and is dominated by the drain channel noise, induced gate noise, and their correlation noise. In this work, we measured the RF noise parameter (Fmin, Rn, Γ opt) of 45 nm node MOSFETs from 5 to 15 GHz and extracted noise sources and noise coefficients P, R, and C by using an extended van der Ziel's model. We found, for the first time, that correlation coefficient C decreases from positive to negative values when the gate length is reduced continuously with the gate length of sub-100 nm. We confirmed that Pucel's noise figure model, using noise coefficients P, R, and C, can be considered a good approximation even for sub-50 nm MOSFETs. We also discussed a scaling effect of the noise coefficients, especially the correlation noise coefficient C on the minimum noise figure.
ER -