The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
L'étain et ses alliages ont été utilisés pour le placage de contacts électriques dans des conditions de faible puissance électrique. En particulier, les contacts étamés sont largement utilisés comme contacts de connecteur dans les applications automobiles et comme contacts de fermeture dans les commutateurs à clavier. Dans la relation entre la résistance de contact (R) et la charge de contact (W) pour l'étain massif et plaqué, des singularités ont été trouvées. Les théories antérieures et bien connues sur la déformation des interfaces de contact ne peuvent expliquer ces singularités. Dans cette étude, pour clarifier ces singularités et obtenir un modèle de contact expliquant ce phénomène, des traces de contact pour la charge de contact ont été examinées par SEM et STM. Les images microscopiques obtenues indiquaient un empilement à la périphérie de la zone de contact pour l'étain solide et plaqué. Dans ce cas, la configuration de contact comprenait une sonde en platine avec une surface de pointe hémisphérique et une surface plate en étain pour les solides et les plaqués. Lorsque la sonde a été chargée, cette pointe de la sonde s'est enfoncée dans la surface molle de l'étain en raison de sa dureté inférieure. Dans le cas d'étain solide, l'enfoncement de la surface de la sonde dans la surface de l'étain provoque un empilement autour de la périphérie de la trace de contact. Dans ce processus de déformation, étant donné que la périphérie de l'indentation de la zone de contact échancrée a fortement glissé contre la surface de la sonde en platine lors de l'application d'une charge de contact, la résistance de contact a rapidement diminué avec la charge. Dans ce cas, la partie centrale de la véritable zone de contact n’a pas été affectée mécaniquement ; ainsi, le film superficiel sur la partie inférieure de la surface plane déformée ne s'est pas brisé mécaniquement. En revanche, dans le cas d'une surface étamée, un empilement similaire s'est produit ; cependant, cela s'accompagnait d'une diffusion et d'une séparation des grains de cristaux d'étain de la surface. À la suite de ce processus, une diminution de la résistance de contact similaire à celle de l’étain solide s’est produite. Étant donné que l’empilement de la surface de contact est un processus très important dans l’application des connecteurs, les caractéristiques inhabituelles mentionnées ci-dessus ont été clarifiées dans cette étude.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Terutaka TAMAI, Shigeru SAWADA, Yasuhiro HATTORI, "Contact Mechanisms and Contact Resistance Characteristics of Solid Tin and Plated Tin Contacts Used for Connectors" in IEICE TRANSACTIONS on Electronics,
vol. E93-C, no. 5, pp. 670-677, May 2010, doi: 10.1587/transele.E93.C.670.
Abstract: Tin and its alloys have been applied for the plating of electrical contacts for low electrical power conditions. In particular, tin-plated contacts are widely used as connector contacts in automotive applications and as make-break contacts in keyboard switches. In the relationship between contact resistance (R) and contact load (W) for both solid and plated tin, singularities have been found. Previously established and well known theories on the deformation of contact interfaces cannot explain these singularities. In this study, to clarify these singularities, and to obtain a contact model explaining this phenomenon, contact traces for contact load were examined by SEM and STM. The obtained microscopic images indicated piling-up at the periphery of the contact area for both solid and plated tin. In this case the contact configuration comprised a platinum probe with a hemispherical tip surface and a flat tin surface for both solid and plated. When the probe was loaded, this tip of the probe sank into the soft tin surface owing to its lower hardness. In case of solid tin, the sinking of the probe surface into the tin surface causes piling-up around the periphery of the contact trace. In this deformation process, since the periphery of the indentation of the indented contact area severely slid against the surface of the platinum probe while applying a contact load, the contact resistance rapidly decreased with load. In this case, the center portion of the true contact area was not affected mechanically; thus, the surface film on the bottom portion of the deformed of the flat surface did not break down mechanically. On the other hand, in the case of a tin plated surface, similar piling up occurred; however, it was accompanied by scattering and separation of tin crystal grains from the surface. As a result of this process, a decrease in contact resistance similar to that for the solid tin occurred. Since the piling-up of the contact surface is a very important process in the application of connectors, the above-mentioned unusual characteristics were clarified in this study.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E93.C.670/_p
Copier
@ARTICLE{e93-c_5_670,
author={Terutaka TAMAI, Shigeru SAWADA, Yasuhiro HATTORI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Contact Mechanisms and Contact Resistance Characteristics of Solid Tin and Plated Tin Contacts Used for Connectors},
year={2010},
volume={E93-C},
number={5},
pages={670-677},
abstract={Tin and its alloys have been applied for the plating of electrical contacts for low electrical power conditions. In particular, tin-plated contacts are widely used as connector contacts in automotive applications and as make-break contacts in keyboard switches. In the relationship between contact resistance (R) and contact load (W) for both solid and plated tin, singularities have been found. Previously established and well known theories on the deformation of contact interfaces cannot explain these singularities. In this study, to clarify these singularities, and to obtain a contact model explaining this phenomenon, contact traces for contact load were examined by SEM and STM. The obtained microscopic images indicated piling-up at the periphery of the contact area for both solid and plated tin. In this case the contact configuration comprised a platinum probe with a hemispherical tip surface and a flat tin surface for both solid and plated. When the probe was loaded, this tip of the probe sank into the soft tin surface owing to its lower hardness. In case of solid tin, the sinking of the probe surface into the tin surface causes piling-up around the periphery of the contact trace. In this deformation process, since the periphery of the indentation of the indented contact area severely slid against the surface of the platinum probe while applying a contact load, the contact resistance rapidly decreased with load. In this case, the center portion of the true contact area was not affected mechanically; thus, the surface film on the bottom portion of the deformed of the flat surface did not break down mechanically. On the other hand, in the case of a tin plated surface, similar piling up occurred; however, it was accompanied by scattering and separation of tin crystal grains from the surface. As a result of this process, a decrease in contact resistance similar to that for the solid tin occurred. Since the piling-up of the contact surface is a very important process in the application of connectors, the above-mentioned unusual characteristics were clarified in this study.},
keywords={},
doi={10.1587/transele.E93.C.670},
ISSN={1745-1353},
month={May},}
Copier
TY - JOUR
TI - Contact Mechanisms and Contact Resistance Characteristics of Solid Tin and Plated Tin Contacts Used for Connectors
T2 - IEICE TRANSACTIONS on Electronics
SP - 670
EP - 677
AU - Terutaka TAMAI
AU - Shigeru SAWADA
AU - Yasuhiro HATTORI
PY - 2010
DO - 10.1587/transele.E93.C.670
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E93-C
IS - 5
JA - IEICE TRANSACTIONS on Electronics
Y1 - May 2010
AB - Tin and its alloys have been applied for the plating of electrical contacts for low electrical power conditions. In particular, tin-plated contacts are widely used as connector contacts in automotive applications and as make-break contacts in keyboard switches. In the relationship between contact resistance (R) and contact load (W) for both solid and plated tin, singularities have been found. Previously established and well known theories on the deformation of contact interfaces cannot explain these singularities. In this study, to clarify these singularities, and to obtain a contact model explaining this phenomenon, contact traces for contact load were examined by SEM and STM. The obtained microscopic images indicated piling-up at the periphery of the contact area for both solid and plated tin. In this case the contact configuration comprised a platinum probe with a hemispherical tip surface and a flat tin surface for both solid and plated. When the probe was loaded, this tip of the probe sank into the soft tin surface owing to its lower hardness. In case of solid tin, the sinking of the probe surface into the tin surface causes piling-up around the periphery of the contact trace. In this deformation process, since the periphery of the indentation of the indented contact area severely slid against the surface of the platinum probe while applying a contact load, the contact resistance rapidly decreased with load. In this case, the center portion of the true contact area was not affected mechanically; thus, the surface film on the bottom portion of the deformed of the flat surface did not break down mechanically. On the other hand, in the case of a tin plated surface, similar piling up occurred; however, it was accompanied by scattering and separation of tin crystal grains from the surface. As a result of this process, a decrease in contact resistance similar to that for the solid tin occurred. Since the piling-up of the contact surface is a very important process in the application of connectors, the above-mentioned unusual characteristics were clarified in this study.
ER -