The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Le micromécanisme du bain de fusion et la pulvérisation de gouttelettes métalliques sont importants pour l'érosion des matériaux provoquée par la rupture ou la création d'arcs, en particulier pour les dispositifs de commutation de haute puissance. Dans cet article, basé sur les équations de Navier-Stokes pour un fluide visqueux incompressible et l'équation de potentiel pour le champ électrique, un modèle hydrodynamique simplifié à symétrie axiale 2D a été construit pour décrire la formation de la pulvérisation de gouttelettes de métal fondu et du bain fondu sous un point d'arc près de la région de l'électrode. Le processus de fusion a été pris en compte par la relation entre le pourcentage volumétrique du métal en fusion et la température, une surface libre de déformation du métal liquide a été résolue en couplant le maillage mobile et le remaillage automatique. Les comportements simulés de pulvérisation de gouttelettes métalliques et de bassin fondu sont présentés par les séquences de distribution de température et de vitesse. Le mécanisme d'influence de la répartition de la pression et du flux de chaleur sur la formation d'un bain de fusion et la pulvérisation de gouttelettes métalliques a été analysé en fonction de la répartition de la température et des angles de pulvérisation. Sur la base des résultats de simulation, nous pouvons distinguer deux modèles différents du processus de pulvérisation de gouttelettes de métal fondu : l’éjection des bords et l’éjection du centre. De plus, une nouvelle explication est proposée sur la base de résultats calculés avec une distribution de pression de point d'arc sous forme à la fois unimodale et bimodale. Cela montre que la distribution de la pression du point d'arc joue un rôle important dans la gouttelette de métal éjectée du bain de fusion, l'angle de chute du jet fondu peut être diminué en même temps que l'augmentation de la pression du point d'arc.
Kai BO
Harbin Institute of Technology
Xue ZHOU
Harbin Institute of Technology
Guofu ZHAI
Harbin Institute of Technology
Mo CHEN
Tokyo Institute of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Kai BO, Xue ZHOU, Guofu ZHAI, Mo CHEN, "Simulation of Metal Droplet Sputtering and Molten Pool on Copper Contact under Electric Arc" in IEICE TRANSACTIONS on Electronics,
vol. E101-C, no. 9, pp. 691-698, September 2018, doi: 10.1587/transele.E101.C.691.
Abstract: The micro-mechanism of molten pool and metal droplet sputtering are significant to the material erosion caused by breaking or making arcs especially for high-power switching devices. In this paper, based on Navier-Stokes equations for incompressible viscous fluid and potential equation for electric field, a 2D axially symmetric simplified hydrodynamic model was built to describe the formation of the molten metal droplet sputtering and molten pool under arc spot near electrode region. The melting process was considered by the relationship between melting metal volumetric percentage and temperature, a free surface of liquid metal deformation was solved by coupling moving mesh and the automatic re-meshing. The simulated metal droplet sputtering and molten pool behaviors are presented by the temperature and velocity distribution sequences. The influence mechanism of pressure distribution and heat flux on the formation of molten pool and metal droplet sputtering has been analyzed according to the temperature distribution and sputtering angles. Based on the simulation results, we can distinguish two different models of the molten metal droplet sputtering process: edge ejection and center ejection. Moreover, a new explanation is proposed based on calculated results with arc spot pressure distribution in the form of both unimodal and bimodal. It shows that the arc spot pressure distribution plays an important role in the metal droplet ejected from molten pool, the angle of the molten jet drop can be decreased along with the increment of the arc spot pressure.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E101.C.691/_p
Copier
@ARTICLE{e101-c_9_691,
author={Kai BO, Xue ZHOU, Guofu ZHAI, Mo CHEN, },
journal={IEICE TRANSACTIONS on Electronics},
title={Simulation of Metal Droplet Sputtering and Molten Pool on Copper Contact under Electric Arc},
year={2018},
volume={E101-C},
number={9},
pages={691-698},
abstract={The micro-mechanism of molten pool and metal droplet sputtering are significant to the material erosion caused by breaking or making arcs especially for high-power switching devices. In this paper, based on Navier-Stokes equations for incompressible viscous fluid and potential equation for electric field, a 2D axially symmetric simplified hydrodynamic model was built to describe the formation of the molten metal droplet sputtering and molten pool under arc spot near electrode region. The melting process was considered by the relationship between melting metal volumetric percentage and temperature, a free surface of liquid metal deformation was solved by coupling moving mesh and the automatic re-meshing. The simulated metal droplet sputtering and molten pool behaviors are presented by the temperature and velocity distribution sequences. The influence mechanism of pressure distribution and heat flux on the formation of molten pool and metal droplet sputtering has been analyzed according to the temperature distribution and sputtering angles. Based on the simulation results, we can distinguish two different models of the molten metal droplet sputtering process: edge ejection and center ejection. Moreover, a new explanation is proposed based on calculated results with arc spot pressure distribution in the form of both unimodal and bimodal. It shows that the arc spot pressure distribution plays an important role in the metal droplet ejected from molten pool, the angle of the molten jet drop can be decreased along with the increment of the arc spot pressure.},
keywords={},
doi={10.1587/transele.E101.C.691},
ISSN={1745-1353},
month={September},}
Copier
TY - JOUR
TI - Simulation of Metal Droplet Sputtering and Molten Pool on Copper Contact under Electric Arc
T2 - IEICE TRANSACTIONS on Electronics
SP - 691
EP - 698
AU - Kai BO
AU - Xue ZHOU
AU - Guofu ZHAI
AU - Mo CHEN
PY - 2018
DO - 10.1587/transele.E101.C.691
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E101-C
IS - 9
JA - IEICE TRANSACTIONS on Electronics
Y1 - September 2018
AB - The micro-mechanism of molten pool and metal droplet sputtering are significant to the material erosion caused by breaking or making arcs especially for high-power switching devices. In this paper, based on Navier-Stokes equations for incompressible viscous fluid and potential equation for electric field, a 2D axially symmetric simplified hydrodynamic model was built to describe the formation of the molten metal droplet sputtering and molten pool under arc spot near electrode region. The melting process was considered by the relationship between melting metal volumetric percentage and temperature, a free surface of liquid metal deformation was solved by coupling moving mesh and the automatic re-meshing. The simulated metal droplet sputtering and molten pool behaviors are presented by the temperature and velocity distribution sequences. The influence mechanism of pressure distribution and heat flux on the formation of molten pool and metal droplet sputtering has been analyzed according to the temperature distribution and sputtering angles. Based on the simulation results, we can distinguish two different models of the molten metal droplet sputtering process: edge ejection and center ejection. Moreover, a new explanation is proposed based on calculated results with arc spot pressure distribution in the form of both unimodal and bimodal. It shows that the arc spot pressure distribution plays an important role in the metal droplet ejected from molten pool, the angle of the molten jet drop can be decreased along with the increment of the arc spot pressure.
ER -