The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Nous développons un système d'imagerie par résonance magnétique (IRM) à champ ultra-faible (ULF) avec un SQUID-rf à haute Tc (HTS) réglé pour l'inspection des aliments. Nous avons précédemment signalé qu'un petit trou dans un morceau de concombre pouvait être détecté. L’image acquise était basée sur une reconstruction par rétroprojection filtrée à l’aide d’un aimant permanent polarisant. Cependant, la résolution de l’image était insuffisante pour l’inspection des aliments et son traitement prenait beaucoup de temps. Le but de cette étude est d'améliorer la qualité de l'image et de réduire le temps de traitement. Nous avons construit un cryostat spécialement conçu, composé d'un réservoir d'azote liquide pour refroidir une bobine de polarisation électromagnétique (135 mT) à 77 K et d'un alésage à température ambiante. Une bobine de détection de Cu a été installée dans l'alésage à température ambiante et a détecté un signal RMN provenant d'un échantillon. Le signal a ensuite été transféré à un HTS SQUID via une bobine d’entrée. Suite à une séquence IRM appropriée, des données de fréquence spatiale à 64 × 32 points dans l'espace k ont été obtenues. Ensuite, une méthode 2D-FFT (Fast Fourier Transformation) a été appliquée pour reconstruire les images 2D-MR. En conséquence, nous avons réussi à obtenir une image claire des caractères « TUT », qui contiennent une largeur la plus étroite de 0.5 mm. Le temps d’imagerie a également été réduit d’un facteur 10 par rapport au système précédent.
Saburo TANAKA
Toyohashi University of Technology
Satoshi KAWAGOE
Toyohashi University of Technology
Kazuma DEMACHI
Toyohashi University of Technology
Junichi HATTA
Toyohashi University of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Saburo TANAKA, Satoshi KAWAGOE, Kazuma DEMACHI, Junichi HATTA, "Ultra-Low Field MRI Food Inspection System Using HTS-SQUID with Flux Transformer" in IEICE TRANSACTIONS on Electronics,
vol. E101-C, no. 8, pp. 680-684, August 2018, doi: 10.1587/transele.E101.C.680.
Abstract: We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system with a tuned high-Tc (HTS)-rf-SQUID for food inspection. We previously reported that a small hole in a piece of cucumber can be detected. The acquired image was based on filtered back-projection reconstruction using a polarizing permanent magnet. However the resolution of the image was insufficient for food inspection and took a long time to process. The purpose of this study is to improve image quality and shorten processing time. We constructed a specially designed cryostat, which consists of a liquid nitrogen tank for cooling an electromagnetic polarizing coil (135mT) at 77K and a room temperature bore. A Cu pickup coil was installed at the room temperature bore and detected an NMR signal from a sample. The signal was then transferred to an HTS SQUID via an input coil. Following a proper MRI sequence, spatial frequency data at 64×32 points in k-space were obtained. Then, a 2D-FFT (Fast Fourier Transformation) method was applied to reconstruct the 2D-MR images. As a result, we successfully obtained a clear water image of the characters “TUT”, which contains a narrowest width of 0.5mm. The imaging time was also shortened by a factor of 10 when compared to the previous system.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E101.C.680/_p
Copier
@ARTICLE{e101-c_8_680,
author={Saburo TANAKA, Satoshi KAWAGOE, Kazuma DEMACHI, Junichi HATTA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Ultra-Low Field MRI Food Inspection System Using HTS-SQUID with Flux Transformer},
year={2018},
volume={E101-C},
number={8},
pages={680-684},
abstract={We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system with a tuned high-Tc (HTS)-rf-SQUID for food inspection. We previously reported that a small hole in a piece of cucumber can be detected. The acquired image was based on filtered back-projection reconstruction using a polarizing permanent magnet. However the resolution of the image was insufficient for food inspection and took a long time to process. The purpose of this study is to improve image quality and shorten processing time. We constructed a specially designed cryostat, which consists of a liquid nitrogen tank for cooling an electromagnetic polarizing coil (135mT) at 77K and a room temperature bore. A Cu pickup coil was installed at the room temperature bore and detected an NMR signal from a sample. The signal was then transferred to an HTS SQUID via an input coil. Following a proper MRI sequence, spatial frequency data at 64×32 points in k-space were obtained. Then, a 2D-FFT (Fast Fourier Transformation) method was applied to reconstruct the 2D-MR images. As a result, we successfully obtained a clear water image of the characters “TUT”, which contains a narrowest width of 0.5mm. The imaging time was also shortened by a factor of 10 when compared to the previous system.},
keywords={},
doi={10.1587/transele.E101.C.680},
ISSN={1745-1353},
month={August},}
Copier
TY - JOUR
TI - Ultra-Low Field MRI Food Inspection System Using HTS-SQUID with Flux Transformer
T2 - IEICE TRANSACTIONS on Electronics
SP - 680
EP - 684
AU - Saburo TANAKA
AU - Satoshi KAWAGOE
AU - Kazuma DEMACHI
AU - Junichi HATTA
PY - 2018
DO - 10.1587/transele.E101.C.680
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E101-C
IS - 8
JA - IEICE TRANSACTIONS on Electronics
Y1 - August 2018
AB - We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system with a tuned high-Tc (HTS)-rf-SQUID for food inspection. We previously reported that a small hole in a piece of cucumber can be detected. The acquired image was based on filtered back-projection reconstruction using a polarizing permanent magnet. However the resolution of the image was insufficient for food inspection and took a long time to process. The purpose of this study is to improve image quality and shorten processing time. We constructed a specially designed cryostat, which consists of a liquid nitrogen tank for cooling an electromagnetic polarizing coil (135mT) at 77K and a room temperature bore. A Cu pickup coil was installed at the room temperature bore and detected an NMR signal from a sample. The signal was then transferred to an HTS SQUID via an input coil. Following a proper MRI sequence, spatial frequency data at 64×32 points in k-space were obtained. Then, a 2D-FFT (Fast Fourier Transformation) method was applied to reconstruct the 2D-MR images. As a result, we successfully obtained a clear water image of the characters “TUT”, which contains a narrowest width of 0.5mm. The imaging time was also shortened by a factor of 10 when compared to the previous system.
ER -