The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Vues en texte intégral
139
Dans cet article, nous avons appliqué la théorie de la synthèse de circuits des filtres à la conception de cellules métasurfaces de type transmission et avons arbitrairement conçu l'amplitude et la phase de la transmission et de la réflexion en ajustant la fréquence de résonance et le coefficient de couplage. De plus, nous avons conçu avec succès la phase de la cellule unitaire en utilisant la conversion de fréquence de la théorie des filtres. De plus, nous avons conçu une plaque métasurface de type transmission réfractive avec une nouvelle structure cellulaire qui réagit aux deux polarisations. Le prototype fonctionnait à l'angle de réfraction souhaité, confirmant la théorie de conception.
Hiromichi YOSHIKAWA
Kyocera Corporation
Nobuki HIRAMATSU
Kyocera Corporation
Masamichi YONEHARA
Kyocera Corporation
Hisamatsu NAKANO
Hosei University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Hiromichi YOSHIKAWA, Nobuki HIRAMATSU, Masamichi YONEHARA, Hisamatsu NAKANO, "A Design Method of Transmission-Type Metasurfaces Using Circuit Synthesis Theory of Microwave Bandpass Filters" in IEICE TRANSACTIONS on Electronics,
vol. E106-C, no. 11, pp. 651-660, November 2023, doi: 10.1587/transele.2023MMI0001.
Abstract: In this paper, we applied the circuit synthesis theory of filters to the design of transmission-type metasurface cells and arbitrarily designed the amplitude and phase of the transmission and reflection by adjusting the resonant frequency and coupling coefficient. In addition, we successfully designed the phase of the unit cell by using the frequency conversion of filter theory. Moreover, we designed a refractive transmission-type metasurface plate with a novel cell structure that reacts to both polarizations. The prototype operated at the desired refraction angle, confirming the design theory.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.2023MMI0001/_p
Copier
@ARTICLE{e106-c_11_651,
author={Hiromichi YOSHIKAWA, Nobuki HIRAMATSU, Masamichi YONEHARA, Hisamatsu NAKANO, },
journal={IEICE TRANSACTIONS on Electronics},
title={A Design Method of Transmission-Type Metasurfaces Using Circuit Synthesis Theory of Microwave Bandpass Filters},
year={2023},
volume={E106-C},
number={11},
pages={651-660},
abstract={In this paper, we applied the circuit synthesis theory of filters to the design of transmission-type metasurface cells and arbitrarily designed the amplitude and phase of the transmission and reflection by adjusting the resonant frequency and coupling coefficient. In addition, we successfully designed the phase of the unit cell by using the frequency conversion of filter theory. Moreover, we designed a refractive transmission-type metasurface plate with a novel cell structure that reacts to both polarizations. The prototype operated at the desired refraction angle, confirming the design theory.},
keywords={},
doi={10.1587/transele.2023MMI0001},
ISSN={1745-1353},
month={November},}
Copier
TY - JOUR
TI - A Design Method of Transmission-Type Metasurfaces Using Circuit Synthesis Theory of Microwave Bandpass Filters
T2 - IEICE TRANSACTIONS on Electronics
SP - 651
EP - 660
AU - Hiromichi YOSHIKAWA
AU - Nobuki HIRAMATSU
AU - Masamichi YONEHARA
AU - Hisamatsu NAKANO
PY - 2023
DO - 10.1587/transele.2023MMI0001
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E106-C
IS - 11
JA - IEICE TRANSACTIONS on Electronics
Y1 - November 2023
AB - In this paper, we applied the circuit synthesis theory of filters to the design of transmission-type metasurface cells and arbitrarily designed the amplitude and phase of the transmission and reflection by adjusting the resonant frequency and coupling coefficient. In addition, we successfully designed the phase of the unit cell by using the frequency conversion of filter theory. Moreover, we designed a refractive transmission-type metasurface plate with a novel cell structure that reacts to both polarizations. The prototype operated at the desired refraction angle, confirming the design theory.
ER -