The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Un muscle artificiel polymère super-enroulé électroactif, qui est fabriqué à partir d'un fil à coudre conducteur par auto-enroulement provoqué par l'insertion d'une torsion avec un poids approprié suspendu, a une longueur de 1/4 à 1/3 du fil. Par conséquent, il est nécessaire de déplacer le poids verticalement environ deux ou trois fois plus longtemps que le muscle artificiel en polymère superenroulé électroactif souhaité, ce qui entraîne une grande dimension verticale de l'équipement de fabrication. Cette étude a tenté de résoudre ce problème en utilisant des ressorts à charge constante qui permettent un équipement de fabrication de table horizontale. Il a également été démontré que l’insertion d’une torsion dans les fils regroupés donne lieu à un muscle artificiel en polymère super-enroulé électroactif puissant.
Kazuya TADA
University of Hyogo
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Kazuya TADA, "Toward Long and Strong Electroactive Supercoiled Polymer Artificial Muscles: Fabrication with Constant-Load Springs" in IEICE TRANSACTIONS on Electronics,
vol. E106-C, no. 6, pp. 232-235, June 2023, doi: 10.1587/transele.2022OMS0006.
Abstract: An electroactive supercoiled polymer artificial muscle, which is made from a conductive sewing thread using self-coiling caused by inserting a twist with a hanged appropriate weight, is 1/4-1/3 of the thread in length. Therefore, it is necessary to move the weight vertically about two or three times as long as the desired electroactive supercoiled polymer artificial muscle, resulting in a large vertical dimension of the fabrication equipment. This study has attempted to solve this problem by using constant-load springs that enable horizontal table-top fabrication equipment. It has been also demonstrated that inserting a twist into the bundled threads results in a strong electroactive supercoiled polymer artificial muscle.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.2022OMS0006/_p
Copier
@ARTICLE{e106-c_6_232,
author={Kazuya TADA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Toward Long and Strong Electroactive Supercoiled Polymer Artificial Muscles: Fabrication with Constant-Load Springs},
year={2023},
volume={E106-C},
number={6},
pages={232-235},
abstract={An electroactive supercoiled polymer artificial muscle, which is made from a conductive sewing thread using self-coiling caused by inserting a twist with a hanged appropriate weight, is 1/4-1/3 of the thread in length. Therefore, it is necessary to move the weight vertically about two or three times as long as the desired electroactive supercoiled polymer artificial muscle, resulting in a large vertical dimension of the fabrication equipment. This study has attempted to solve this problem by using constant-load springs that enable horizontal table-top fabrication equipment. It has been also demonstrated that inserting a twist into the bundled threads results in a strong electroactive supercoiled polymer artificial muscle.},
keywords={},
doi={10.1587/transele.2022OMS0006},
ISSN={1745-1353},
month={June},}
Copier
TY - JOUR
TI - Toward Long and Strong Electroactive Supercoiled Polymer Artificial Muscles: Fabrication with Constant-Load Springs
T2 - IEICE TRANSACTIONS on Electronics
SP - 232
EP - 235
AU - Kazuya TADA
PY - 2023
DO - 10.1587/transele.2022OMS0006
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E106-C
IS - 6
JA - IEICE TRANSACTIONS on Electronics
Y1 - June 2023
AB - An electroactive supercoiled polymer artificial muscle, which is made from a conductive sewing thread using self-coiling caused by inserting a twist with a hanged appropriate weight, is 1/4-1/3 of the thread in length. Therefore, it is necessary to move the weight vertically about two or three times as long as the desired electroactive supercoiled polymer artificial muscle, resulting in a large vertical dimension of the fabrication equipment. This study has attempted to solve this problem by using constant-load springs that enable horizontal table-top fabrication equipment. It has been also demonstrated that inserting a twist into the bundled threads results in a strong electroactive supercoiled polymer artificial muscle.
ER -