The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
L’un des moyens les plus rentables d’augmenter la capacité de transmission des systèmes de transmission à multiplexage par répartition en longueur d’onde (WDM) standard actuels consiste à utiliser une bande de longueur d’onde autre que la bande C pour transmettre en multibande. Nous avons proposé le concept de système multibande utilisant la conversion de longueur d'onde, capable de traiter simultanément des signaux sur une large plage de longueurs d'onde. La conversion de longueur d'onde entièrement optique pourrait être utilisée pour convertir les signaux WDM en bande C en d'autres bandes dans une fibre hautement non linéaire (HNLF) par mélange à quatre ondes et permettre de transmettre simultanément plusieurs signaux WDM, y compris autres que la bande C, avec seulement C -émetteurs-récepteurs à bandes. Une conversion de longueur d'onde a été rapportée pour divers matériaux de guide d'ondes non linéaires autres que le HNLF. Dans de tels matériaux non linéaires, nous avons remarqué la possibilité d'une transmission à large bande par des guides d'ondes silicium sur isolant (SOI) adaptés à la dispersion. Sur la base de la grande précision du processus CMOS, on s'attend à ce que la fluctuation de la dispersion chromatique puisse être réduite lors de la production de masse. Dans le cadre de la première étape de l'étude de l'étendue de la conversion de longueur d'onde à l'aide de guides d'ondes basés sur SOI, nous avons conçu et fabriqué des guides d'ondes à 12 bandes adaptés à la dispersion, dotés d'un coupleur de bord aux deux extrémités. Chacun des 12 guides d'ondes a des largeurs et des longueurs différentes et est connecté aux fibres via des fibres à lentilles ou par des lentilles. Afin de caractériser chaque guide d'ondes, la configuration expérimentale pompe-sonde a été construite en utilisant une source de lumière accordable comme pompe et un signal de test WDM en bande C non modulé de 96 canaux. À l'aide de cette configuration, nous évaluons la perte d'insertion, la dépendance à la puissance d'entrée, la bande passante de conversion et l'efficacité de la conversion. Nous avons confirmé que le signal de test en bande C a été converti en bande S et en bande L en utilisant le même guide d'onde en silicium avec une bande passante de conversion de 3 dB sur 100 nm. De plus, une tolérance de conception accrue d'au moins 90 nm a été confirmée pour la conversion C-to-S en raccourcissant la longueur du guide d'onde. Il est confirmé que les convertisseurs de longueur d'onde utilisant le guide d'ondes non linéaire disposent d'une bande passante de conversion suffisamment large pour améliorer le système de transmission WDM multibande.
Hidenobu MURANAKA
Fujitsu Ltd.
Tomoyuki KATO
Fujitsu Ltd.
Shun OKADA
Fujitsu Ltd.
Tokuharu KIMURA
Fujitsu Ltd.
Yu TANAKA
Fujitsu Ltd.
Tsuyoshi YAMAMOTO
Fujitsu Ltd.
Isaac SACKEY
Fraunhofer Institute for Telecommunications Heinrich-Hertz-Institute
Gregor RONNIGER
Fraunhofer Institute for Telecommunications Heinrich-Hertz-Institute
Robert ELSCHNER
Fraunhofer Institute for Telecommunications Heinrich-Hertz-Institute
Carsten SCHMIDT-LANGHORST
Fraunhofer Institute for Telecommunications Heinrich-Hertz-Institute
Colja SCHUBERT
Fraunhofer Institute for Telecommunications Heinrich-Hertz-Institute
Takeshi HOSHIDA
Fujitsu Ltd.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Hidenobu MURANAKA, Tomoyuki KATO, Shun OKADA, Tokuharu KIMURA, Yu TANAKA, Tsuyoshi YAMAMOTO, Isaac SACKEY, Gregor RONNIGER, Robert ELSCHNER, Carsten SCHMIDT-LANGHORST, Colja SCHUBERT, Takeshi HOSHIDA, "Design and Characterization of Dispersion-Tailored Silicon Strip Waveguides toward Wideband Wavelength Conversion" in IEICE TRANSACTIONS on Electronics,
vol. E106-C, no. 11, pp. 757-764, November 2023, doi: 10.1587/transele.2022OCP0004.
Abstract: One of cost-effective ways to increase the transmission capacity of current standard wavelength division multiplexing (WDM) transmission systems is to use a wavelength band other than the C-band to transmit in multi-band. We proposed the concept of multi-band system using wavelength conversion, which can simultaneously process signals over a wide wavelength range. All-optical wavelength conversion could be used to convert C-band WDM signals into other bands in a highly nonlinear fiber (HNLF) by four-wave mixing and allow to simultaneously transmit multiple WDM signals including other than the C-band, with only C-band transceivers. Wavelength conversion has been reported for various nonlinear waveguide materials other than HNLF. In such nonlinear materials, we noticed the possibility of wideband transmission by dispersion-tailored silicon-on-insulator (SOI) waveguides. Based on the CMOS process has high accuracy, it is expected that the chromatic dispersion fluctuation could be reduced in mass production. As a first step in the investigation of the broadness of wavelength conversion using SOI-based waveguides, we designed and fabricated dispersion-tailored 12 strip waveguides provided with an edge coupler at both ends. Each of the 12 waveguides having different widths and lengths and is connected to fibers via lensed fibers or by lenses. In order to characterize each waveguide, the pump-probe experimental setup was constructed using a tunable light source as pump and an unmodulated 96-ch C-band WDM test signal. Using this setup, we evaluate insertion loss, input power dependence, conversion bandwidth and conversion efficiency. We confirmed C-band test signal was converted to the S-band and the L-band using the same silicon waveguide with 3dB conversion bandwidth over 100-nm. Furthermore, an increased design tolerance of at least 90nm was confirmed for C-to-S conversion by shortening the waveguide length. It is confirmed that the wavelength converters using the nonlinear waveguide has sufficiently wide conversion bandwidth to enhance the multi-band WDM transmission system.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.2022OCP0004/_p
Copier
@ARTICLE{e106-c_11_757,
author={Hidenobu MURANAKA, Tomoyuki KATO, Shun OKADA, Tokuharu KIMURA, Yu TANAKA, Tsuyoshi YAMAMOTO, Isaac SACKEY, Gregor RONNIGER, Robert ELSCHNER, Carsten SCHMIDT-LANGHORST, Colja SCHUBERT, Takeshi HOSHIDA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Design and Characterization of Dispersion-Tailored Silicon Strip Waveguides toward Wideband Wavelength Conversion},
year={2023},
volume={E106-C},
number={11},
pages={757-764},
abstract={One of cost-effective ways to increase the transmission capacity of current standard wavelength division multiplexing (WDM) transmission systems is to use a wavelength band other than the C-band to transmit in multi-band. We proposed the concept of multi-band system using wavelength conversion, which can simultaneously process signals over a wide wavelength range. All-optical wavelength conversion could be used to convert C-band WDM signals into other bands in a highly nonlinear fiber (HNLF) by four-wave mixing and allow to simultaneously transmit multiple WDM signals including other than the C-band, with only C-band transceivers. Wavelength conversion has been reported for various nonlinear waveguide materials other than HNLF. In such nonlinear materials, we noticed the possibility of wideband transmission by dispersion-tailored silicon-on-insulator (SOI) waveguides. Based on the CMOS process has high accuracy, it is expected that the chromatic dispersion fluctuation could be reduced in mass production. As a first step in the investigation of the broadness of wavelength conversion using SOI-based waveguides, we designed and fabricated dispersion-tailored 12 strip waveguides provided with an edge coupler at both ends. Each of the 12 waveguides having different widths and lengths and is connected to fibers via lensed fibers or by lenses. In order to characterize each waveguide, the pump-probe experimental setup was constructed using a tunable light source as pump and an unmodulated 96-ch C-band WDM test signal. Using this setup, we evaluate insertion loss, input power dependence, conversion bandwidth and conversion efficiency. We confirmed C-band test signal was converted to the S-band and the L-band using the same silicon waveguide with 3dB conversion bandwidth over 100-nm. Furthermore, an increased design tolerance of at least 90nm was confirmed for C-to-S conversion by shortening the waveguide length. It is confirmed that the wavelength converters using the nonlinear waveguide has sufficiently wide conversion bandwidth to enhance the multi-band WDM transmission system.},
keywords={},
doi={10.1587/transele.2022OCP0004},
ISSN={1745-1353},
month={November},}
Copier
TY - JOUR
TI - Design and Characterization of Dispersion-Tailored Silicon Strip Waveguides toward Wideband Wavelength Conversion
T2 - IEICE TRANSACTIONS on Electronics
SP - 757
EP - 764
AU - Hidenobu MURANAKA
AU - Tomoyuki KATO
AU - Shun OKADA
AU - Tokuharu KIMURA
AU - Yu TANAKA
AU - Tsuyoshi YAMAMOTO
AU - Isaac SACKEY
AU - Gregor RONNIGER
AU - Robert ELSCHNER
AU - Carsten SCHMIDT-LANGHORST
AU - Colja SCHUBERT
AU - Takeshi HOSHIDA
PY - 2023
DO - 10.1587/transele.2022OCP0004
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E106-C
IS - 11
JA - IEICE TRANSACTIONS on Electronics
Y1 - November 2023
AB - One of cost-effective ways to increase the transmission capacity of current standard wavelength division multiplexing (WDM) transmission systems is to use a wavelength band other than the C-band to transmit in multi-band. We proposed the concept of multi-band system using wavelength conversion, which can simultaneously process signals over a wide wavelength range. All-optical wavelength conversion could be used to convert C-band WDM signals into other bands in a highly nonlinear fiber (HNLF) by four-wave mixing and allow to simultaneously transmit multiple WDM signals including other than the C-band, with only C-band transceivers. Wavelength conversion has been reported for various nonlinear waveguide materials other than HNLF. In such nonlinear materials, we noticed the possibility of wideband transmission by dispersion-tailored silicon-on-insulator (SOI) waveguides. Based on the CMOS process has high accuracy, it is expected that the chromatic dispersion fluctuation could be reduced in mass production. As a first step in the investigation of the broadness of wavelength conversion using SOI-based waveguides, we designed and fabricated dispersion-tailored 12 strip waveguides provided with an edge coupler at both ends. Each of the 12 waveguides having different widths and lengths and is connected to fibers via lensed fibers or by lenses. In order to characterize each waveguide, the pump-probe experimental setup was constructed using a tunable light source as pump and an unmodulated 96-ch C-band WDM test signal. Using this setup, we evaluate insertion loss, input power dependence, conversion bandwidth and conversion efficiency. We confirmed C-band test signal was converted to the S-band and the L-band using the same silicon waveguide with 3dB conversion bandwidth over 100-nm. Furthermore, an increased design tolerance of at least 90nm was confirmed for C-to-S conversion by shortening the waveguide length. It is confirmed that the wavelength converters using the nonlinear waveguide has sufficiently wide conversion bandwidth to enhance the multi-band WDM transmission system.
ER -