The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Nous avons proposé une structure de guide d'onde intégrée adaptée à la propagation de la lumière dans l'infrarouge moyen et proche utilisant Si et CaF.2 hétérostructures sur substrat Si. En utilisant un processus de fabrication basé sur des techniques de gravure, de lithographie et de croissance cristalline, nous avons formé une structure de guide d'onde en plaque avec un mécanisme d'injection de courant sur un substrat SOI, qui serait un composant clé pour Si/CaF.2 lasers à cascade quantique et autres systèmes optiques intégrés. La propagation de la lumière à une longueur d'onde de 1.55 µm à travers un Si/CaF2 La structure du guide d'ondes a été démontrée pour la première fois en utilisant une structure avec un Si/CaF2 noyau multicouche avec une épaisseur de 610 nm et une largeur de guide d'onde de 970 nm, qui satisfait à la condition monomode dans la direction horizontale dans une tolérance de précision de fabrication. La perte du guide d'onde pour le mode magnétique transversal (TM) a été évaluée à 51.4 cm-1. La cause de la perte a été discutée en estimant la diffusion de la rugosité des bords et l'absorption des porteurs libres, ce qui suggère qu'une réduction supplémentaire de la perte serait possible.
Long LIU
Tokyo Institute of Technology
Gensai TEI
Tokyo Institute of Technology
Masahiro WATANABE
Tokyo Institute of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Long LIU, Gensai TEI, Masahiro WATANABE, "Design, Fabrication, and Evaluation of Waveguide Structure Using Si/CaF2 Heterostructure for Near- and Mid- Infrared Silicon Photonics" in IEICE TRANSACTIONS on Electronics,
vol. E106-C, no. 1, pp. 1-6, January 2023, doi: 10.1587/transele.2022ECP5007.
Abstract: We have proposed integrated waveguide structure suitable for mid- and near- infrared light propagation using Si and CaF2 heterostructures on Si substrate. Using a fabrication process based on etching, lithography and crystal growth techniques, we have formed a slab-waveguide structure with a current injection mechanism on a SOI substrate, which would be a key component for Si/CaF2 quantum cascade lasers and other optical integrated systems. The propagation of light at a wavelength of 1.55 µm through a Si/CaF2 waveguide structure have been demonstrated for the first time using a structure with a Si/CaF2 multilayered core with 610-nm-thick, waveguide width of 970 nm, which satisfies single-mode condition in the horizontal direction within a tolerance of fabrication accuracy. The waveguide loss for transverse magnetic (TM) mode has been evaluated to be 51.4 cm-1. The cause of the loss was discussed by estimating the edge roughness scattering and free carrier absorption, which suggests further reduction of the loss would be possible.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.2022ECP5007/_p
Copier
@ARTICLE{e106-c_1_1,
author={Long LIU, Gensai TEI, Masahiro WATANABE, },
journal={IEICE TRANSACTIONS on Electronics},
title={Design, Fabrication, and Evaluation of Waveguide Structure Using Si/CaF2 Heterostructure for Near- and Mid- Infrared Silicon Photonics},
year={2023},
volume={E106-C},
number={1},
pages={1-6},
abstract={We have proposed integrated waveguide structure suitable for mid- and near- infrared light propagation using Si and CaF2 heterostructures on Si substrate. Using a fabrication process based on etching, lithography and crystal growth techniques, we have formed a slab-waveguide structure with a current injection mechanism on a SOI substrate, which would be a key component for Si/CaF2 quantum cascade lasers and other optical integrated systems. The propagation of light at a wavelength of 1.55 µm through a Si/CaF2 waveguide structure have been demonstrated for the first time using a structure with a Si/CaF2 multilayered core with 610-nm-thick, waveguide width of 970 nm, which satisfies single-mode condition in the horizontal direction within a tolerance of fabrication accuracy. The waveguide loss for transverse magnetic (TM) mode has been evaluated to be 51.4 cm-1. The cause of the loss was discussed by estimating the edge roughness scattering and free carrier absorption, which suggests further reduction of the loss would be possible.},
keywords={},
doi={10.1587/transele.2022ECP5007},
ISSN={1745-1353},
month={January},}
Copier
TY - JOUR
TI - Design, Fabrication, and Evaluation of Waveguide Structure Using Si/CaF2 Heterostructure for Near- and Mid- Infrared Silicon Photonics
T2 - IEICE TRANSACTIONS on Electronics
SP - 1
EP - 6
AU - Long LIU
AU - Gensai TEI
AU - Masahiro WATANABE
PY - 2023
DO - 10.1587/transele.2022ECP5007
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E106-C
IS - 1
JA - IEICE TRANSACTIONS on Electronics
Y1 - January 2023
AB - We have proposed integrated waveguide structure suitable for mid- and near- infrared light propagation using Si and CaF2 heterostructures on Si substrate. Using a fabrication process based on etching, lithography and crystal growth techniques, we have formed a slab-waveguide structure with a current injection mechanism on a SOI substrate, which would be a key component for Si/CaF2 quantum cascade lasers and other optical integrated systems. The propagation of light at a wavelength of 1.55 µm through a Si/CaF2 waveguide structure have been demonstrated for the first time using a structure with a Si/CaF2 multilayered core with 610-nm-thick, waveguide width of 970 nm, which satisfies single-mode condition in the horizontal direction within a tolerance of fabrication accuracy. The waveguide loss for transverse magnetic (TM) mode has been evaluated to be 51.4 cm-1. The cause of the loss was discussed by estimating the edge roughness scattering and free carrier absorption, which suggests further reduction of the loss would be possible.
ER -