The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Vues en texte intégral
93
La technologie photonique sur silicium est un candidat prometteur pour les émetteurs-récepteurs à petit facteur de forme pouvant être utilisés dans les applications de centres de données. Cette technologie présente un faible encombrement, un faible coût de fabrication et une bonne immunité à la température. Cependant, son principal défi réside dans le fonctionnement à haut débit en bauds des modulateurs optiques avec une faible consommation d'énergie. Cet article étudie un modulateur Mach-Zehnder entièrement en silicium basé sur les déphaseurs optiques à électrodes localisées. Ces déphaseurs sont pilotés par un pilote d'onduleur à semi-conducteur à oxyde métallique complémentaire (CMOS) pour obtenir un émetteur optique de faible puissance. Cette architecture améliore l'efficacité énergétique car un convertisseur numérique-analogique (DAC) électrique et un pilote linéaire ne sont pas nécessaires. De plus, le courant ne circule qu’au moment de la transition des données. A cet effet, nous utilisons un déphaseur à diode PIN. Ces déphaseurs ont une grande capacité, ce qui permet de réduire la tension de commande tout en conservant un déphasage optique. D'autre part, cette étude intègre un égaliseur passif résistance-capacité (RC) avec un déphaseur PIN pour étendre la bande passante électro-optique (EO) d'un modulateur. Par conséquent, l'efficacité de la modulation et la bande passante EO peuvent être optimisées en concevant le condensateur de l'égaliseur RC. Cet article passe en revue les progrès récents dans le fonctionnement à grande vitesse d'un modulateur PIN-RC tout-Si. Cette étude présente une structure métal-isolant-métal (MIM) pour un condensateur avec un égaliseur RC passif afin d'obtenir une bande passante EO plus large. En conséquence, cette étude atteint une bande passante EO de 35.7 à 37 GHz et un fonctionnement NRZ à 70 Gbauds est confirmé.
Yohei SOBU
Fujitsu Limited
Shinsuke TANAKA
Fujitsu Limited
Yu TANAKA
Fujitsu Limited
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Yohei SOBU, Shinsuke TANAKA, Yu TANAKA, "High-Speed-Operation of All-Silicon Lumped-Electrode Modulator Integrated with Passive Equalizer" in IEICE TRANSACTIONS on Electronics,
vol. E103-C, no. 11, pp. 619-626, November 2020, doi: 10.1587/transele.2019OCP0006.
Abstract: Silicon photonics technology is a promising candidate for small form factor transceivers that can be used in data-center applications. This technology has a small footprint, a low fabrication cost, and good temperature immunity. However, its main challenge is due to the high baud rate operation for optical modulators with a low power consumption. This paper investigates an all-Silicon Mach-Zehnder modulator based on the lumped-electrode optical phase shifters. These phase shifters are driven by a complementary metal oxide semiconductor (CMOS) inverter driver to achieve a low power optical transmitter. This architecture improves the power efficiency because an electrical digital-to-analog converter (DAC) and a linear driver are not required. In addition, the current only flows at the time of data transition. For this purpose, we use a PIN-diode phase shifter. These phase shifters have a large capacitance so the driving voltage can be reduced while maintaining an optical phase shift. On the other hand, this study integrates a passive resistance-capacitance (RC) equalizer with a PIN-phase shifter to expand the electro-optic (EO) bandwidth of a modulator. Therefore, the modulation efficiency and the EO bandwidth can be optimized by designing the capacitor of the RC equalizer. This paper reviews the recent progress for the high-speed operation of an all-Si PIN-RC modulator. This study introduces a metal-insulator-metal (MIM) structure for a capacitor with a passive RC equalizer to obtain a wider EO bandwidth. As a result, this investigation achieves an EO bandwidth of 35.7-37 GHz and a 70 Gbaud NRZ operation is confirmed.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.2019OCP0006/_p
Copier
@ARTICLE{e103-c_11_619,
author={Yohei SOBU, Shinsuke TANAKA, Yu TANAKA, },
journal={IEICE TRANSACTIONS on Electronics},
title={High-Speed-Operation of All-Silicon Lumped-Electrode Modulator Integrated with Passive Equalizer},
year={2020},
volume={E103-C},
number={11},
pages={619-626},
abstract={Silicon photonics technology is a promising candidate for small form factor transceivers that can be used in data-center applications. This technology has a small footprint, a low fabrication cost, and good temperature immunity. However, its main challenge is due to the high baud rate operation for optical modulators with a low power consumption. This paper investigates an all-Silicon Mach-Zehnder modulator based on the lumped-electrode optical phase shifters. These phase shifters are driven by a complementary metal oxide semiconductor (CMOS) inverter driver to achieve a low power optical transmitter. This architecture improves the power efficiency because an electrical digital-to-analog converter (DAC) and a linear driver are not required. In addition, the current only flows at the time of data transition. For this purpose, we use a PIN-diode phase shifter. These phase shifters have a large capacitance so the driving voltage can be reduced while maintaining an optical phase shift. On the other hand, this study integrates a passive resistance-capacitance (RC) equalizer with a PIN-phase shifter to expand the electro-optic (EO) bandwidth of a modulator. Therefore, the modulation efficiency and the EO bandwidth can be optimized by designing the capacitor of the RC equalizer. This paper reviews the recent progress for the high-speed operation of an all-Si PIN-RC modulator. This study introduces a metal-insulator-metal (MIM) structure for a capacitor with a passive RC equalizer to obtain a wider EO bandwidth. As a result, this investigation achieves an EO bandwidth of 35.7-37 GHz and a 70 Gbaud NRZ operation is confirmed.},
keywords={},
doi={10.1587/transele.2019OCP0006},
ISSN={1745-1353},
month={November},}
Copier
TY - JOUR
TI - High-Speed-Operation of All-Silicon Lumped-Electrode Modulator Integrated with Passive Equalizer
T2 - IEICE TRANSACTIONS on Electronics
SP - 619
EP - 626
AU - Yohei SOBU
AU - Shinsuke TANAKA
AU - Yu TANAKA
PY - 2020
DO - 10.1587/transele.2019OCP0006
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E103-C
IS - 11
JA - IEICE TRANSACTIONS on Electronics
Y1 - November 2020
AB - Silicon photonics technology is a promising candidate for small form factor transceivers that can be used in data-center applications. This technology has a small footprint, a low fabrication cost, and good temperature immunity. However, its main challenge is due to the high baud rate operation for optical modulators with a low power consumption. This paper investigates an all-Silicon Mach-Zehnder modulator based on the lumped-electrode optical phase shifters. These phase shifters are driven by a complementary metal oxide semiconductor (CMOS) inverter driver to achieve a low power optical transmitter. This architecture improves the power efficiency because an electrical digital-to-analog converter (DAC) and a linear driver are not required. In addition, the current only flows at the time of data transition. For this purpose, we use a PIN-diode phase shifter. These phase shifters have a large capacitance so the driving voltage can be reduced while maintaining an optical phase shift. On the other hand, this study integrates a passive resistance-capacitance (RC) equalizer with a PIN-phase shifter to expand the electro-optic (EO) bandwidth of a modulator. Therefore, the modulation efficiency and the EO bandwidth can be optimized by designing the capacitor of the RC equalizer. This paper reviews the recent progress for the high-speed operation of an all-Si PIN-RC modulator. This study introduces a metal-insulator-metal (MIM) structure for a capacitor with a passive RC equalizer to obtain a wider EO bandwidth. As a result, this investigation achieves an EO bandwidth of 35.7-37 GHz and a 70 Gbaud NRZ operation is confirmed.
ER -