The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Le calcul précis de l’inductance constitue le problème le plus fondamental de la conception d’un inducteur. Dans cet article, la distribution de la densité de flux du noyau et le flux de fuite dans la fenêtre du noyau et l'enroulement de l'inducteur de type noyau sont d'abord analysés par analyse par éléments finis (FEA). Sur cette base, un circuit équivalent magnétique amélioré avec une distribution de densité de flux de haute précision (iMEC) est proposé pour un inducteur de type noyau monophasé. En fonction de la structure géométrique, deux chemins de fuite de la fenêtre centrale sont modélisés. De plus, l'iMEC divise la force magnétomotrice de l'enroulement dans la branche centrale correspondante. Cela rend la distribution de la densité de flux du noyau cohérente avec la distribution FEA pour améliorer la précision de l'inductance. Dans l'iMEC, la densité de flux de la jambe centrale présente une erreur inférieure à 5.6 % par rapport à la simulation FEA à 150 A. L'erreur relative maximale de l'inductance est inférieure à 8.5 % et l'erreur relative moyenne est inférieure à 6 % par rapport aux données de test du prototype physique. Dans le même temps, en raison de la grande efficacité de calcul d’iMEC, il est très approprié pour la conception d’optimisation basée sur la population.
Xiaodong WANG
Chinese Academy of Sciences,University of Chinese Academy of Sciences
Lyes DOUADJI
Chinese Academy of Sciences
Xia ZHANG
Chinese Academy of Sciences
Mingquan SHI
Chinese Academy of Sciences
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Xiaodong WANG, Lyes DOUADJI, Xia ZHANG, Mingquan SHI, "Improved Magnetic Equivalent Circuit with High Accuracy Flux Density Distribution of Core-Type Inductor" in IEICE TRANSACTIONS on Electronics,
vol. E103-C, no. 8, pp. 362-371, August 2020, doi: 10.1587/transele.2019ECP5042.
Abstract: The accurate calculation of the inductance is the most basic problem of the inductor design. In this paper, the core flux density distribution and leakage flux in core window and winding of core-type inductor are analyzed by finite element analysis (FEA) firstly. Based on it, an improved magnetic equivalent circuit with high accuracy flux density distribution (iMEC) is proposed for a single-phase core-type inductor. Depend on the geometric structure, two leakage paths of the core window are modeled. Furthermore, the iMEC divides the magnetomotive force of the winding into the corresponding core branch. It makes the core flux density distribution consistent with the FEA distribution to improve the accuracy of the inductance. In the iMEC, flux density of the core leg has an error less than 5.6% compared to FEA simulation at 150A. The maximum relative error of the inductance is less than 8.5% and the average relative error is less than 6% compared to the physical prototype test data. At the same time, due to the high computational efficiency of iMEC, it is very suitable for the population-based optimization design.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.2019ECP5042/_p
Copier
@ARTICLE{e103-c_8_362,
author={Xiaodong WANG, Lyes DOUADJI, Xia ZHANG, Mingquan SHI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Improved Magnetic Equivalent Circuit with High Accuracy Flux Density Distribution of Core-Type Inductor},
year={2020},
volume={E103-C},
number={8},
pages={362-371},
abstract={The accurate calculation of the inductance is the most basic problem of the inductor design. In this paper, the core flux density distribution and leakage flux in core window and winding of core-type inductor are analyzed by finite element analysis (FEA) firstly. Based on it, an improved magnetic equivalent circuit with high accuracy flux density distribution (iMEC) is proposed for a single-phase core-type inductor. Depend on the geometric structure, two leakage paths of the core window are modeled. Furthermore, the iMEC divides the magnetomotive force of the winding into the corresponding core branch. It makes the core flux density distribution consistent with the FEA distribution to improve the accuracy of the inductance. In the iMEC, flux density of the core leg has an error less than 5.6% compared to FEA simulation at 150A. The maximum relative error of the inductance is less than 8.5% and the average relative error is less than 6% compared to the physical prototype test data. At the same time, due to the high computational efficiency of iMEC, it is very suitable for the population-based optimization design.},
keywords={},
doi={10.1587/transele.2019ECP5042},
ISSN={1745-1353},
month={August},}
Copier
TY - JOUR
TI - Improved Magnetic Equivalent Circuit with High Accuracy Flux Density Distribution of Core-Type Inductor
T2 - IEICE TRANSACTIONS on Electronics
SP - 362
EP - 371
AU - Xiaodong WANG
AU - Lyes DOUADJI
AU - Xia ZHANG
AU - Mingquan SHI
PY - 2020
DO - 10.1587/transele.2019ECP5042
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E103-C
IS - 8
JA - IEICE TRANSACTIONS on Electronics
Y1 - August 2020
AB - The accurate calculation of the inductance is the most basic problem of the inductor design. In this paper, the core flux density distribution and leakage flux in core window and winding of core-type inductor are analyzed by finite element analysis (FEA) firstly. Based on it, an improved magnetic equivalent circuit with high accuracy flux density distribution (iMEC) is proposed for a single-phase core-type inductor. Depend on the geometric structure, two leakage paths of the core window are modeled. Furthermore, the iMEC divides the magnetomotive force of the winding into the corresponding core branch. It makes the core flux density distribution consistent with the FEA distribution to improve the accuracy of the inductance. In the iMEC, flux density of the core leg has an error less than 5.6% compared to FEA simulation at 150A. The maximum relative error of the inductance is less than 8.5% and the average relative error is less than 6% compared to the physical prototype test data. At the same time, due to the high computational efficiency of iMEC, it is very suitable for the population-based optimization design.
ER -