The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Nous avons proposé le mécanisme de conduction des diodes électroluminescentes organiques (OLED) en utilisant un modèle discontinu unidimensionnel. Nous avons supposé que chaque molécule émettrice correspond à un site de saut en fonction du transfert de charge réel entre molécules adjacentes. La mobilité des porteurs d'Alq3 et les hauteurs des barrières pour chaque porteur ont été dérivées de données expérimentales. Nous calculons le comportement transitoire de la distribution des porteurs, des champs et des excitons. Les deux injections de porteurs supposaient l'injection Schottky. Dans les résultats précédents, lorsque nous supposions que la densité de courant calculée correspondait à celle expérimentale dans la courbe de champ de densité de courant, l'intensité d'émission lumineuse calculée ne correspondait pas à celle expérimentale dans la courbe de champ d'émission lumineuse. De plus, la pente de la courbe de champ d’émission lumineuse calculée est trop petite pour correspondre à celle expérimentale. Dans l’étude précédente, la distance de saut était supposée être de 1 nm. Dans cette étude, elle est supposée être de 1.7 nm. Nous considérons que la dépendance au champ de l’injection électronique est trop faible pour expliquer uniquement l’émission Schottky. Lorsque l'injection d'électrons est supposée être à la fois une émission Schottky et une émission Fowler-Nordheim, le champ d'émission de lumière calculé ainsi que les courbes de champ de densité de courant ont été ajustés à la courbe de chaque caractéristique expérimentale.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Takuya OGAWA, Don-Chan CHO, Kazue KANEKO, Tatsuo MORI, Teruyoshi MIZUTANI, "Study on the Conduction Mechanism of Organic Light-Emitting Diode Using One-Dimensional Discontinuous Model" in IEICE TRANSACTIONS on Electronics,
vol. E85-C, no. 6, pp. 1239-1244, June 2002, doi: .
Abstract: We proposed the conduction mechanism of organic light-emitting diode (OLED) using a one-dimensional discontinuous model. We assumed that each emitting molecule corresponds to a hopping site according to the actual charge transfer between adjacent molecules. Both carrier mobility of Alq3 and barrier heights for each carrier were derived from experimental data. We calculate transient behavior of carrier, field, and exciton distribution. Both carrier injections assumed the Schottky injection. In the previous results, when we assumed that calculated current density fit the experimental one in the current density field curve, calculated light-emission intensity did not fit the experimental one in the light-emission field curve. Furthermore, the slope of the calculated light emission-field curve is too small to fit the experimental one. In the previous study, hopping distance was assumed to be 1 nm. In this study, it is assumed to be 1.7 nm. We consider that field dependence of electron injection is too weak to explain only the Schottky emission. When the electron injection is assumed to be both Schottky emission and Fowler-Nordheim emission calculated light-emission field as well as the current-density field curves were fit to the curve of each experimental characteristics.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e85-c_6_1239/_p
Copier
@ARTICLE{e85-c_6_1239,
author={Takuya OGAWA, Don-Chan CHO, Kazue KANEKO, Tatsuo MORI, Teruyoshi MIZUTANI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Study on the Conduction Mechanism of Organic Light-Emitting Diode Using One-Dimensional Discontinuous Model},
year={2002},
volume={E85-C},
number={6},
pages={1239-1244},
abstract={We proposed the conduction mechanism of organic light-emitting diode (OLED) using a one-dimensional discontinuous model. We assumed that each emitting molecule corresponds to a hopping site according to the actual charge transfer between adjacent molecules. Both carrier mobility of Alq3 and barrier heights for each carrier were derived from experimental data. We calculate transient behavior of carrier, field, and exciton distribution. Both carrier injections assumed the Schottky injection. In the previous results, when we assumed that calculated current density fit the experimental one in the current density field curve, calculated light-emission intensity did not fit the experimental one in the light-emission field curve. Furthermore, the slope of the calculated light emission-field curve is too small to fit the experimental one. In the previous study, hopping distance was assumed to be 1 nm. In this study, it is assumed to be 1.7 nm. We consider that field dependence of electron injection is too weak to explain only the Schottky emission. When the electron injection is assumed to be both Schottky emission and Fowler-Nordheim emission calculated light-emission field as well as the current-density field curves were fit to the curve of each experimental characteristics.},
keywords={},
doi={},
ISSN={},
month={June},}
Copier
TY - JOUR
TI - Study on the Conduction Mechanism of Organic Light-Emitting Diode Using One-Dimensional Discontinuous Model
T2 - IEICE TRANSACTIONS on Electronics
SP - 1239
EP - 1244
AU - Takuya OGAWA
AU - Don-Chan CHO
AU - Kazue KANEKO
AU - Tatsuo MORI
AU - Teruyoshi MIZUTANI
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E85-C
IS - 6
JA - IEICE TRANSACTIONS on Electronics
Y1 - June 2002
AB - We proposed the conduction mechanism of organic light-emitting diode (OLED) using a one-dimensional discontinuous model. We assumed that each emitting molecule corresponds to a hopping site according to the actual charge transfer between adjacent molecules. Both carrier mobility of Alq3 and barrier heights for each carrier were derived from experimental data. We calculate transient behavior of carrier, field, and exciton distribution. Both carrier injections assumed the Schottky injection. In the previous results, when we assumed that calculated current density fit the experimental one in the current density field curve, calculated light-emission intensity did not fit the experimental one in the light-emission field curve. Furthermore, the slope of the calculated light emission-field curve is too small to fit the experimental one. In the previous study, hopping distance was assumed to be 1 nm. In this study, it is assumed to be 1.7 nm. We consider that field dependence of electron injection is too weak to explain only the Schottky emission. When the electron injection is assumed to be both Schottky emission and Fowler-Nordheim emission calculated light-emission field as well as the current-density field curves were fit to the curve of each experimental characteristics.
ER -