The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La méthode FDTD nécessite une analyse de Fourier pour obtenir les champs d'une seule fréquence. De plus, les spectres de fréquences des champs utilisés dans le procédé FDTD ont généralement de larges bandes, et tous les champs du FDTD sont traités comme des nombres réels. Par conséquent, si la permittivité ε et la perméabilité µ du milieu dépendent de la fréquence, ou si l'impédance de surface utilisée pour la condition aux limites d'impédance de surface (SIBC) dépend de la fréquence, la méthode FDTD devient très compliquée en raison de l'intégrale de convolution. Dans la théorie électromagnétique, nous supposons généralement que les champs oscillent de manière sinusoïdale et que les champs ainsi que ε et µ sont des nombres complexes. L’avantage de l’introduction des nombres complexes est très étendu. Comme nous le faisons dans la théorie électromagnétique habituelle, les auteurs supposent que les champs dans FDTD oscillent de manière sinusoïdale. Dans le FDTD proposé, les champs ε, µ et les impédances de surface pour SIBC sont tous traités comme des nombres complexes. La méthode FDTD proposée peut supprimer les points faibles mentionnés ci-dessus de la méthode FDTD conventionnelle.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Md. Osman GONI, Masao KODAMA, "The Finite Difference Time Domain Method for Sinusoidal Electromagnetic Fields" in IEICE TRANSACTIONS on Electronics,
vol. E85-C, no. 3, pp. 823-830, March 2002, doi: .
Abstract: The FDTD method needs Fourier analysis to obtain the fields of a single frequency. Furthermore, the frequency spectra of the fields used in the FDTD method ordinarily have wide bands, and all the fields in FDTD are treated as real numbers. Therefore, if the permittivity ε and the permeability µ of the medium depend on frequency, or if the surface impedance used for the surface impedance boundary condition (SIBC) depends on the frequency, the FDTD method becomes very complicated because of convolution integral. In the electromagnetic theory, we usually assume that the fields oscillate sinusoidally, and that the fields and ε and µ are complex numbers. The benefit of introduction of the complex numbers is very extensive. As we do in the usual electromagnetic theory, the authors assume that the fields in FDTD oscillate sinusoidally. In the proposed FDTD, the fields, ε, µ and the surface impedances for SIBC are all treated as the complex numbers. The proposed FDTD method can remove the above-mentioned weak points of the conventional FDTD method.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e85-c_3_823/_p
Copier
@ARTICLE{e85-c_3_823,
author={Md. Osman GONI, Masao KODAMA, },
journal={IEICE TRANSACTIONS on Electronics},
title={The Finite Difference Time Domain Method for Sinusoidal Electromagnetic Fields},
year={2002},
volume={E85-C},
number={3},
pages={823-830},
abstract={The FDTD method needs Fourier analysis to obtain the fields of a single frequency. Furthermore, the frequency spectra of the fields used in the FDTD method ordinarily have wide bands, and all the fields in FDTD are treated as real numbers. Therefore, if the permittivity ε and the permeability µ of the medium depend on frequency, or if the surface impedance used for the surface impedance boundary condition (SIBC) depends on the frequency, the FDTD method becomes very complicated because of convolution integral. In the electromagnetic theory, we usually assume that the fields oscillate sinusoidally, and that the fields and ε and µ are complex numbers. The benefit of introduction of the complex numbers is very extensive. As we do in the usual electromagnetic theory, the authors assume that the fields in FDTD oscillate sinusoidally. In the proposed FDTD, the fields, ε, µ and the surface impedances for SIBC are all treated as the complex numbers. The proposed FDTD method can remove the above-mentioned weak points of the conventional FDTD method.},
keywords={},
doi={},
ISSN={},
month={March},}
Copier
TY - JOUR
TI - The Finite Difference Time Domain Method for Sinusoidal Electromagnetic Fields
T2 - IEICE TRANSACTIONS on Electronics
SP - 823
EP - 830
AU - Md. Osman GONI
AU - Masao KODAMA
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E85-C
IS - 3
JA - IEICE TRANSACTIONS on Electronics
Y1 - March 2002
AB - The FDTD method needs Fourier analysis to obtain the fields of a single frequency. Furthermore, the frequency spectra of the fields used in the FDTD method ordinarily have wide bands, and all the fields in FDTD are treated as real numbers. Therefore, if the permittivity ε and the permeability µ of the medium depend on frequency, or if the surface impedance used for the surface impedance boundary condition (SIBC) depends on the frequency, the FDTD method becomes very complicated because of convolution integral. In the electromagnetic theory, we usually assume that the fields oscillate sinusoidally, and that the fields and ε and µ are complex numbers. The benefit of introduction of the complex numbers is very extensive. As we do in the usual electromagnetic theory, the authors assume that the fields in FDTD oscillate sinusoidally. In the proposed FDTD, the fields, ε, µ and the surface impedances for SIBC are all treated as the complex numbers. The proposed FDTD method can remove the above-mentioned weak points of the conventional FDTD method.
ER -