The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Une étude de premier ordre des processus de transport et de perte d'énergie dans le dioxyde de silicium est réalisée dans le cadre de la solution des harmoniques sphériques de l'équation de transport de Boltzmann. Le SiO2 la bande de conduction est traitée comme une bande sphérique et parabolique à une seule vallée. Les mécanismes de diffusion pertinents sont modélisés de manière cohérente : les mécanismes de diffusion électron-phonon polaires et non polaires sont pris en compte. Les taux de diffusion pour chaque contribution sont analysés en comparaison avec les données de Monte Carlo. Un certain nombre de propriétés de transport macroscopiques des électrons dans SiO2 sont élaborés en régime permanent pour une structure globale homogène. L'enquête montre un bon accord par rapport aux expériences en régime de faible champ et pour différentes températures.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Lucia SCOZZOLI, Susanna REGGIANI, Massimo RUDAN, "Homogeneous Transport in Silicon Dioxide Using the Spherical-Harmonics Expansion of the BTE" in IEICE TRANSACTIONS on Electronics,
vol. E83-C, no. 8, pp. 1183-1188, August 2000, doi: .
Abstract: A first-order investigation of the transport and energy-loss processes in silicon dioxide is worked out in the frame of the Spherical-Harmonics solution of the Boltzmann Transport Equation. The SiO2 conduction band is treated as a single-valley spherical and parabolic band. The relevant scattering mechanisms are modeled consistently: both the polar and nonpolar electron-phonon scattering mechanisms are considered. The scattering rates for each contribution are analyzed in comparison with Monte Carlo data. A number of macroscopic transport properties of electrons in SiO2 are worked out in the steady-state regime for a homogeneous bulk structure. The investigation shows a good agreement in comparison with experiments in the low-field regime and for different temperatures.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e83-c_8_1183/_p
Copier
@ARTICLE{e83-c_8_1183,
author={Lucia SCOZZOLI, Susanna REGGIANI, Massimo RUDAN, },
journal={IEICE TRANSACTIONS on Electronics},
title={Homogeneous Transport in Silicon Dioxide Using the Spherical-Harmonics Expansion of the BTE},
year={2000},
volume={E83-C},
number={8},
pages={1183-1188},
abstract={A first-order investigation of the transport and energy-loss processes in silicon dioxide is worked out in the frame of the Spherical-Harmonics solution of the Boltzmann Transport Equation. The SiO2 conduction band is treated as a single-valley spherical and parabolic band. The relevant scattering mechanisms are modeled consistently: both the polar and nonpolar electron-phonon scattering mechanisms are considered. The scattering rates for each contribution are analyzed in comparison with Monte Carlo data. A number of macroscopic transport properties of electrons in SiO2 are worked out in the steady-state regime for a homogeneous bulk structure. The investigation shows a good agreement in comparison with experiments in the low-field regime and for different temperatures.},
keywords={},
doi={},
ISSN={},
month={August},}
Copier
TY - JOUR
TI - Homogeneous Transport in Silicon Dioxide Using the Spherical-Harmonics Expansion of the BTE
T2 - IEICE TRANSACTIONS on Electronics
SP - 1183
EP - 1188
AU - Lucia SCOZZOLI
AU - Susanna REGGIANI
AU - Massimo RUDAN
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E83-C
IS - 8
JA - IEICE TRANSACTIONS on Electronics
Y1 - August 2000
AB - A first-order investigation of the transport and energy-loss processes in silicon dioxide is worked out in the frame of the Spherical-Harmonics solution of the Boltzmann Transport Equation. The SiO2 conduction band is treated as a single-valley spherical and parabolic band. The relevant scattering mechanisms are modeled consistently: both the polar and nonpolar electron-phonon scattering mechanisms are considered. The scattering rates for each contribution are analyzed in comparison with Monte Carlo data. A number of macroscopic transport properties of electrons in SiO2 are worked out in the steady-state regime for a homogeneous bulk structure. The investigation shows a good agreement in comparison with experiments in the low-field regime and for different temperatures.
ER -