The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cet article, nous rendons compte de la modélisation et de la simulation du courant tunnel dans les dispositifs MOS, y compris les effets de la mécanique quantique. Le modèle de simulation présente un schéma original pour la solution auto-cohérente des équations de Poisson et Schrödinger et est utilisé pour l'extraction de l'épaisseur de l'oxyde, par ajustement des courbes CV, et le calcul du courant tunnel. Les simulations et les expériences sont comparées pour différents types de dispositifs et épaisseurs d'oxyde (1.5 à 6.5 nm), montrant un bon accord et soulignant l'importance de la modélisation mécanique quantique et la présence de nombreux mécanismes tunnel dans les dispositifs MOS à oxyde ultra-mince.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Andrea GHETTI, Jeff BUDE, Paul SILVERMAN, Amal HAMAD, Hem VAIDYA, "Modeling and Simulation of Tunneling Current in MOS Devices Including Quantum Mechanical Effects" in IEICE TRANSACTIONS on Electronics,
vol. E83-C, no. 8, pp. 1175-1182, August 2000, doi: .
Abstract: In this paper we report on the modeling and simulation of tunneling current in MOS devices including quantum mechanical effects. The simulation model features an original scheme for the self-consistent solution of Poisson and Schrodinger equations and it is used for the extraction of the oxide thickness, by fitting CV curves, and the calculation of the tunneling current. Simulations and experiments are compared for different device types and oxide thicknesses (1.5-6.5 nm) showing good agreement and pointing out the importance of quantum mechanical modeling and the presence of many tunneling mechanisms in ultra-thin oxide MOS devices.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e83-c_8_1175/_p
Copier
@ARTICLE{e83-c_8_1175,
author={Andrea GHETTI, Jeff BUDE, Paul SILVERMAN, Amal HAMAD, Hem VAIDYA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Modeling and Simulation of Tunneling Current in MOS Devices Including Quantum Mechanical Effects},
year={2000},
volume={E83-C},
number={8},
pages={1175-1182},
abstract={In this paper we report on the modeling and simulation of tunneling current in MOS devices including quantum mechanical effects. The simulation model features an original scheme for the self-consistent solution of Poisson and Schrodinger equations and it is used for the extraction of the oxide thickness, by fitting CV curves, and the calculation of the tunneling current. Simulations and experiments are compared for different device types and oxide thicknesses (1.5-6.5 nm) showing good agreement and pointing out the importance of quantum mechanical modeling and the presence of many tunneling mechanisms in ultra-thin oxide MOS devices.},
keywords={},
doi={},
ISSN={},
month={August},}
Copier
TY - JOUR
TI - Modeling and Simulation of Tunneling Current in MOS Devices Including Quantum Mechanical Effects
T2 - IEICE TRANSACTIONS on Electronics
SP - 1175
EP - 1182
AU - Andrea GHETTI
AU - Jeff BUDE
AU - Paul SILVERMAN
AU - Amal HAMAD
AU - Hem VAIDYA
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E83-C
IS - 8
JA - IEICE TRANSACTIONS on Electronics
Y1 - August 2000
AB - In this paper we report on the modeling and simulation of tunneling current in MOS devices including quantum mechanical effects. The simulation model features an original scheme for the self-consistent solution of Poisson and Schrodinger equations and it is used for the extraction of the oxide thickness, by fitting CV curves, and the calculation of the tunneling current. Simulations and experiments are compared for different device types and oxide thicknesses (1.5-6.5 nm) showing good agreement and pointing out the importance of quantum mechanical modeling and the presence of many tunneling mechanisms in ultra-thin oxide MOS devices.
ER -