The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La technique de multiplexage par répartition en longueur d'onde (WDM) utilisant des amplificateurs à fibre dopée à l'erbium (EDFA) à large bande est considérée comme la solution la plus efficace pour répondre à la demande croissante de capacité de transmission. Afin d'étendre la bande passante optique en dehors de la bande conventionnelle (bande C) allant de 1530 1565 à 1570 1600 nm, les EDFA à base de silice (EDSFA) fonctionnant dans la bande de longueur d'onde longue (bande L) allant de XNUMX XNUMX à XNUMX XNUMX nm semblent être le candidat le plus attractif car ils peuvent être composés du même matériau que les EDSFA en bande C, c'est-à-dire des EDF codopés à l'Al à base de silice. Cependant, il existe plusieurs divergences entre les EDSFA en bande C et en bande L qui proviennent inévitablement de la différence de niveau d'inversion et de l'emplacement de la bande. Cet article passe en revue les caractéristiques de base des EDSFA en bande L, qui ont constitué une question controversée pour l'application pratique des EDSFA en bande L, telles que les longueurs d'EDSF requises, l'efficacité de conversion de puissance, les performances de bruit et la bande passante optique. Nous décrirons également le comportement des EDSFA en bande L sous des changements circonstanciels, tels que la variation de la perte d'envergure, la température de l'EDSF et le nombre de longueurs d'onde, attendus dans les systèmes WDM sur le terrain. L'inclinaison dynamique du gain et la modification induite par la température dans le spectre de gain des EDSFA en bande L sont plus significatives que celles des EDSFA en bande C. De plus, les EDSFA en bande L présentent un effet d'élargissement inhomogène apparent plus important, ce qui peut gêner le contrôle précis du gain lorsque le nombre de longueurs d'onde est modifié de manière dynamique. Toutes ces caractéristiques doivent être prises en compte pour les futures conceptions de réseaux WDM à large bande.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Motoki KAKUI, Shinji ISHIKAWA, "Long-Wavelength-Band Optical Amplifiers Employing Silica-Based Erbium Doped Fibers Designed for Wavelength Division Multiplexing Systems and Networks" in IEICE TRANSACTIONS on Electronics,
vol. E83-C, no. 6, pp. 799-815, June 2000, doi: .
Abstract: Wavelength-division multiplexing (WDM) technique employing broadband erbium-doped fiber amplifiers (EDFAs) is considered to be the most effective solution to respond to the increasing demand for transmission capacity. As a means to extend the optical bandwidth outside the conventional band (C-band) ranging from 1530 to 1565 nm, silica-based EDFAs (EDSFAs) operating within the long-wavelength band (L-band) ranging form 1570 to 1600 nm seem to be the most attractive candidate because they can be composed of the same material as C-band EDSFAs, i. e. silica-based Al codoped EDF. However, there exist several discrepancies between C-band and L-band EDSFAs which originate inevitably from the difference in the inversion level and the band location. This paper reviews the basic characteristics of L-band EDSFAs, which have been a controversial issue for practical application of the L-band EDSFAs, such as required EDSF lengths, power conversion efficiency, noise performances, and optical bandwidth. We will also describe L-band EDSFAs' behavior under circumstantial changes, such as the variation of the span-loss, the temperature of the EDSF, and the number of wavelengths, which are expected in the field WDM systems. The dynamic-gain-tilt and temperature-induced change in the gain spectra of L-band EDSFAs are more significant than those of C-band EDSFAs are. Moreover, L-band EDSFAs exhibit a greater apparent inhomogeneous broadening effect, which may hinder the precise gain control when the number of wavelengths is dynamically changed. All of these characteristics must be considered for future designs of broadband WDM networks.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e83-c_6_799/_p
Copier
@ARTICLE{e83-c_6_799,
author={Motoki KAKUI, Shinji ISHIKAWA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Long-Wavelength-Band Optical Amplifiers Employing Silica-Based Erbium Doped Fibers Designed for Wavelength Division Multiplexing Systems and Networks},
year={2000},
volume={E83-C},
number={6},
pages={799-815},
abstract={Wavelength-division multiplexing (WDM) technique employing broadband erbium-doped fiber amplifiers (EDFAs) is considered to be the most effective solution to respond to the increasing demand for transmission capacity. As a means to extend the optical bandwidth outside the conventional band (C-band) ranging from 1530 to 1565 nm, silica-based EDFAs (EDSFAs) operating within the long-wavelength band (L-band) ranging form 1570 to 1600 nm seem to be the most attractive candidate because they can be composed of the same material as C-band EDSFAs, i. e. silica-based Al codoped EDF. However, there exist several discrepancies between C-band and L-band EDSFAs which originate inevitably from the difference in the inversion level and the band location. This paper reviews the basic characteristics of L-band EDSFAs, which have been a controversial issue for practical application of the L-band EDSFAs, such as required EDSF lengths, power conversion efficiency, noise performances, and optical bandwidth. We will also describe L-band EDSFAs' behavior under circumstantial changes, such as the variation of the span-loss, the temperature of the EDSF, and the number of wavelengths, which are expected in the field WDM systems. The dynamic-gain-tilt and temperature-induced change in the gain spectra of L-band EDSFAs are more significant than those of C-band EDSFAs are. Moreover, L-band EDSFAs exhibit a greater apparent inhomogeneous broadening effect, which may hinder the precise gain control when the number of wavelengths is dynamically changed. All of these characteristics must be considered for future designs of broadband WDM networks.},
keywords={},
doi={},
ISSN={},
month={June},}
Copier
TY - JOUR
TI - Long-Wavelength-Band Optical Amplifiers Employing Silica-Based Erbium Doped Fibers Designed for Wavelength Division Multiplexing Systems and Networks
T2 - IEICE TRANSACTIONS on Electronics
SP - 799
EP - 815
AU - Motoki KAKUI
AU - Shinji ISHIKAWA
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E83-C
IS - 6
JA - IEICE TRANSACTIONS on Electronics
Y1 - June 2000
AB - Wavelength-division multiplexing (WDM) technique employing broadband erbium-doped fiber amplifiers (EDFAs) is considered to be the most effective solution to respond to the increasing demand for transmission capacity. As a means to extend the optical bandwidth outside the conventional band (C-band) ranging from 1530 to 1565 nm, silica-based EDFAs (EDSFAs) operating within the long-wavelength band (L-band) ranging form 1570 to 1600 nm seem to be the most attractive candidate because they can be composed of the same material as C-band EDSFAs, i. e. silica-based Al codoped EDF. However, there exist several discrepancies between C-band and L-band EDSFAs which originate inevitably from the difference in the inversion level and the band location. This paper reviews the basic characteristics of L-band EDSFAs, which have been a controversial issue for practical application of the L-band EDSFAs, such as required EDSF lengths, power conversion efficiency, noise performances, and optical bandwidth. We will also describe L-band EDSFAs' behavior under circumstantial changes, such as the variation of the span-loss, the temperature of the EDSF, and the number of wavelengths, which are expected in the field WDM systems. The dynamic-gain-tilt and temperature-induced change in the gain spectra of L-band EDSFAs are more significant than those of C-band EDSFAs are. Moreover, L-band EDSFAs exhibit a greater apparent inhomogeneous broadening effect, which may hinder the precise gain control when the number of wavelengths is dynamically changed. All of these characteristics must be considered for future designs of broadband WDM networks.
ER -