The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La technique utilisée est basée sur la mesure de l'activité optique thermique de la température combinée à une modulation de polarisation induite par un champ électrique de la lumière d'entrée. Le quartz est utilisé comme élément de détection. Une lame 1/4 d'onde est placée derrière le quartz afin qu'une seule tête de détection puisse émettre simultanément deux signaux : l'un inclut l'effet Pockels pour la mesure de tension ; l'autre activité optique pour la mesure de la température. Le principe de fonctionnement du capteur qui détecte la tension et la température est présenté théoriquement et expérimentalement. La technique de séparation de la tension et de la température des signaux est analysée théoriquement et expérimentalement. Il a été constaté que la sensibilité du capteur de tension à la température dépend des valeurs de tension qui lui sont appliquées. Pour réaliser une compensation de température sur une plage complète, deux paramètres clés doivent être obtenus : l'un est la réponse du capteur de tension à la température lorsque la tension appliquée est nulle ; une autre est la réponse du matériau de détection à la température lorsqu'une certaine tension est appliquée. En l'absence d'électrogiration, l'effet de la tension sur le capteur de température peut être négligé. La technique a été démontrée à l’aide d’un capteur de tension à fibre optique avec compensation de température. Le capteur offrait une plage de mesure de tension de 0 à 10 kV et une stabilité de température de
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Xiaoping ZHENG, Yanbiao LIAO, "A Technique for Fiber Optic Voltage Sensor to Realize Temperature Compensation" in IEICE TRANSACTIONS on Electronics,
vol. E83-C, no. 3, pp. 342-346, March 2000, doi: .
Abstract: The technique used is based on thermal optical activity measurement of temperature combined with electric-field-induced polarization modulation of the input light. Quartz is used as the sensing element. A 1/4 wave plate is placed behind the quartz so that a single sensing head can simultaneously output two signals: one includes the Pockels effect for voltage measurement; the other optical activity for the temperature measurement. The operating principle of the sensor which detects voltage and temperature is presented theoretically and experimentally. The technique for separating voltage and temperature from the signals is analyzed theoretically and experimentally. It was found that the sensitivity of the voltage sensor to temperature depends on the magnitudes of voltage applied to it. To realize temperature compensation over a full range, two key parameters must be obtained: one is the response of the voltage sensor to temperature when the applied voltage is zero; another is the response of the sensing material to temperature when a certain voltage is applied. In the absence of electrogyration the effect of voltage on the temperature sensor may be neglected. The technique was demonstrated using a fiber-optic voltage sensor with temperature compensation. The sensor offered a voltage measurement range of 0-10 kV, and a temperature stability of
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e83-c_3_342/_p
Copier
@ARTICLE{e83-c_3_342,
author={Xiaoping ZHENG, Yanbiao LIAO, },
journal={IEICE TRANSACTIONS on Electronics},
title={A Technique for Fiber Optic Voltage Sensor to Realize Temperature Compensation},
year={2000},
volume={E83-C},
number={3},
pages={342-346},
abstract={The technique used is based on thermal optical activity measurement of temperature combined with electric-field-induced polarization modulation of the input light. Quartz is used as the sensing element. A 1/4 wave plate is placed behind the quartz so that a single sensing head can simultaneously output two signals: one includes the Pockels effect for voltage measurement; the other optical activity for the temperature measurement. The operating principle of the sensor which detects voltage and temperature is presented theoretically and experimentally. The technique for separating voltage and temperature from the signals is analyzed theoretically and experimentally. It was found that the sensitivity of the voltage sensor to temperature depends on the magnitudes of voltage applied to it. To realize temperature compensation over a full range, two key parameters must be obtained: one is the response of the voltage sensor to temperature when the applied voltage is zero; another is the response of the sensing material to temperature when a certain voltage is applied. In the absence of electrogyration the effect of voltage on the temperature sensor may be neglected. The technique was demonstrated using a fiber-optic voltage sensor with temperature compensation. The sensor offered a voltage measurement range of 0-10 kV, and a temperature stability of
keywords={},
doi={},
ISSN={},
month={March},}
Copier
TY - JOUR
TI - A Technique for Fiber Optic Voltage Sensor to Realize Temperature Compensation
T2 - IEICE TRANSACTIONS on Electronics
SP - 342
EP - 346
AU - Xiaoping ZHENG
AU - Yanbiao LIAO
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E83-C
IS - 3
JA - IEICE TRANSACTIONS on Electronics
Y1 - March 2000
AB - The technique used is based on thermal optical activity measurement of temperature combined with electric-field-induced polarization modulation of the input light. Quartz is used as the sensing element. A 1/4 wave plate is placed behind the quartz so that a single sensing head can simultaneously output two signals: one includes the Pockels effect for voltage measurement; the other optical activity for the temperature measurement. The operating principle of the sensor which detects voltage and temperature is presented theoretically and experimentally. The technique for separating voltage and temperature from the signals is analyzed theoretically and experimentally. It was found that the sensitivity of the voltage sensor to temperature depends on the magnitudes of voltage applied to it. To realize temperature compensation over a full range, two key parameters must be obtained: one is the response of the voltage sensor to temperature when the applied voltage is zero; another is the response of the sensing material to temperature when a certain voltage is applied. In the absence of electrogyration the effect of voltage on the temperature sensor may be neglected. The technique was demonstrated using a fiber-optic voltage sensor with temperature compensation. The sensor offered a voltage measurement range of 0-10 kV, and a temperature stability of
ER -