The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Une nouvelle technique a été développée pour la détection in situ de la croissance de films minces. Dans ce procédé, une sonde à fibre optique est placée à un endroit approprié dans une chambre de dépôt et le film mince s'accumule à l'extrémité de la fibre. Ce film est soit le même que sur la tranche où le dépôt a lieu, soit il entretient une relation fixe avec le film sur la tranche. Par une analyse de l'intensité de la lumière réfléchie par le film et guidée par la fibre, des informations sur le film peuvent être obtenues. Avec des interférences provoquant des maxima, des minima et un point d'inflexion au fur et à mesure de la croissance du film, il est possible d'obtenir des informations en temps quasi réel sur les grandeurs suivantes : les parties réelles et imaginaires de l'indice de réfraction du film, un paramètre gaussien caractérisant la rugosité de la surface, et l'épaisseur du film lui-même. Pour démontrer cette technique, nous avons étudié le dépôt de films de nitrure de silicium dans un réacteur CVD et comment la température du réacteur et les débits de réactifs influencent la croissance du film. Cette technique peut être appliquée pour mesurer la réflectivité in situ de films multicouches, de sorte que la réflectance en fonction de la température et du temps puisse être obtenue. Parce que la mesure est simple et directe et que les informations sont optiques, nous pensons que cette technique a le potentiel de supplanter les oscillateurs à quartz dans la mesure de la croissance de couches minces.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Yifei HE, Brian W. SHELDON, Theodore F. MORSE, "In Situ Fiber Optical Sensor for the Measurement of Thin Films" in IEICE TRANSACTIONS on Electronics,
vol. E83-C, no. 3, pp. 315-325, March 2000, doi: .
Abstract: A novel technique has been developed for in situ sensing of thin film growth. In this method, a fiber optic probe is placed at an appropriate position in a deposition chamber, and the thin film builds up on the end of the fiber. This film is either the same as on the wafer where deposition occurs, or it bears a fixed relationship to the film on the wafer. By an analysis of the intensity of the light reflected from the film and guided by the fiber, information on the film may be obtained. With interference causing maxima, minima and a point of inflection as the film grows, it is possible to obtain near real time information on the following quantities: the real and imaginary parts of the refractive index of the film, a Gaussian parameter characterizing surface roughness, and the film thickness itself. To demonstrate this technique, we have studied the deposition of silicon nitride films in a CVD reactor and how reactor temperature and reactant flow rates influence film growth. This technique may be applied to measure in situ reflectivity of multi layer films, so that reflectance as a function of temperature and time may be obtained. Because the measurement is simple and direct and the information is optical, we believe that this technique has the potential to supplant quartz oscillators in the measurement of thin film growth.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e83-c_3_315/_p
Copier
@ARTICLE{e83-c_3_315,
author={Yifei HE, Brian W. SHELDON, Theodore F. MORSE, },
journal={IEICE TRANSACTIONS on Electronics},
title={In Situ Fiber Optical Sensor for the Measurement of Thin Films},
year={2000},
volume={E83-C},
number={3},
pages={315-325},
abstract={A novel technique has been developed for in situ sensing of thin film growth. In this method, a fiber optic probe is placed at an appropriate position in a deposition chamber, and the thin film builds up on the end of the fiber. This film is either the same as on the wafer where deposition occurs, or it bears a fixed relationship to the film on the wafer. By an analysis of the intensity of the light reflected from the film and guided by the fiber, information on the film may be obtained. With interference causing maxima, minima and a point of inflection as the film grows, it is possible to obtain near real time information on the following quantities: the real and imaginary parts of the refractive index of the film, a Gaussian parameter characterizing surface roughness, and the film thickness itself. To demonstrate this technique, we have studied the deposition of silicon nitride films in a CVD reactor and how reactor temperature and reactant flow rates influence film growth. This technique may be applied to measure in situ reflectivity of multi layer films, so that reflectance as a function of temperature and time may be obtained. Because the measurement is simple and direct and the information is optical, we believe that this technique has the potential to supplant quartz oscillators in the measurement of thin film growth.},
keywords={},
doi={},
ISSN={},
month={March},}
Copier
TY - JOUR
TI - In Situ Fiber Optical Sensor for the Measurement of Thin Films
T2 - IEICE TRANSACTIONS on Electronics
SP - 315
EP - 325
AU - Yifei HE
AU - Brian W. SHELDON
AU - Theodore F. MORSE
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E83-C
IS - 3
JA - IEICE TRANSACTIONS on Electronics
Y1 - March 2000
AB - A novel technique has been developed for in situ sensing of thin film growth. In this method, a fiber optic probe is placed at an appropriate position in a deposition chamber, and the thin film builds up on the end of the fiber. This film is either the same as on the wafer where deposition occurs, or it bears a fixed relationship to the film on the wafer. By an analysis of the intensity of the light reflected from the film and guided by the fiber, information on the film may be obtained. With interference causing maxima, minima and a point of inflection as the film grows, it is possible to obtain near real time information on the following quantities: the real and imaginary parts of the refractive index of the film, a Gaussian parameter characterizing surface roughness, and the film thickness itself. To demonstrate this technique, we have studied the deposition of silicon nitride films in a CVD reactor and how reactor temperature and reactant flow rates influence film growth. This technique may be applied to measure in situ reflectivity of multi layer films, so that reflectance as a function of temperature and time may be obtained. Because the measurement is simple and direct and the information is optical, we believe that this technique has the potential to supplant quartz oscillators in the measurement of thin film growth.
ER -