The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La technique de Monte Carlo pleine bande est actuellement la méthode de simulation de dispositif la plus précise, mais son utilité est limitée car elle est très gourmande en CPU. Ce travail décrit en détail des algorithmes efficaces, qui élèvent l'efficacité de la méthode de Monte Carlo pleine bande à un niveau où elle devient applicable dans le processus de conception de dispositifs au-delà des simulations exemplaires. Le k-l'espace est discrétisé avec une grille tétraédrique non uniforme, ce qui minimise l'erreur de discrétisation de l'interpolation d'énergie linéaire et les besoins en mémoire. Une discrétisation cohérente du tenseur de masse inverse est utilisée pour formuler des estimateurs efficaces des paramètres de transport. La diffusion des particules est modélisée de telle manière qu'une technique de réjection très rapide peut être utilisée pour la génération de l'état final, éliminant la principale cause de l'inefficacité des simulations Monte Carlo pleine bande. Le simulateur Monte Carlo pleine bande développé est très efficace. Par exemple, en conjonction avec la technique de simulation non auto-cohérente, des temps CPU de quelques minutes CPU par point de polarisation sont obtenus pour les calculs de courant de substrat. Les calculs auto-cohérents du courant de drain d'un NMOSFET 60 nm prennent environ quelques heures CPU, démontrant la faisabilité des simulations Monte Carlo pleine bande.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Christoph JUNGEMANN, Stefan KEITH, Martin BARTELS, Bernd MEINERZHAGEN, "Efficient Full-Band Monte Carlo Simulation of Silicon Devices" in IEICE TRANSACTIONS on Electronics,
vol. E82-C, no. 6, pp. 870-879, June 1999, doi: .
Abstract: The full-band Monte Carlo technique is currently the most accurate device simulation method, but its usefulness is limited because it is very CPU intensive. This work describes efficient algorithms in detail, which raise the efficiency of the full-band Monte Carlo method to a level where it becomes applicable in the device design process beyond exemplary simulations. The k-space is discretized with a nonuniform tetrahedral grid, which minimizes the discretization error of the linear energy interpolation and memory requirements. A consistent discretization of the inverse mass tensor is utilized to formulate efficient transport parameter estimators. Particle scattering is modeled in such a way that a very fast rejection technique can be used for the generation of the final state eliminating the main cause of the inefficiency of full-band Monte Carlo simulations. The developed full-band Monte Carlo simulator is highly efficient. For example, in conjunction with the nonself-consistent simulation technique CPU times of a few CPU minutes per bias point are achieved for substrate current calculations. Self-consistent calculations of the drain current of a 60nm-NMOSFET take about a few CPU hours demonstrating the feasibility of full-band Monte Carlo simulations.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e82-c_6_870/_p
Copier
@ARTICLE{e82-c_6_870,
author={Christoph JUNGEMANN, Stefan KEITH, Martin BARTELS, Bernd MEINERZHAGEN, },
journal={IEICE TRANSACTIONS on Electronics},
title={Efficient Full-Band Monte Carlo Simulation of Silicon Devices},
year={1999},
volume={E82-C},
number={6},
pages={870-879},
abstract={The full-band Monte Carlo technique is currently the most accurate device simulation method, but its usefulness is limited because it is very CPU intensive. This work describes efficient algorithms in detail, which raise the efficiency of the full-band Monte Carlo method to a level where it becomes applicable in the device design process beyond exemplary simulations. The k-space is discretized with a nonuniform tetrahedral grid, which minimizes the discretization error of the linear energy interpolation and memory requirements. A consistent discretization of the inverse mass tensor is utilized to formulate efficient transport parameter estimators. Particle scattering is modeled in such a way that a very fast rejection technique can be used for the generation of the final state eliminating the main cause of the inefficiency of full-band Monte Carlo simulations. The developed full-band Monte Carlo simulator is highly efficient. For example, in conjunction with the nonself-consistent simulation technique CPU times of a few CPU minutes per bias point are achieved for substrate current calculations. Self-consistent calculations of the drain current of a 60nm-NMOSFET take about a few CPU hours demonstrating the feasibility of full-band Monte Carlo simulations.},
keywords={},
doi={},
ISSN={},
month={June},}
Copier
TY - JOUR
TI - Efficient Full-Band Monte Carlo Simulation of Silicon Devices
T2 - IEICE TRANSACTIONS on Electronics
SP - 870
EP - 879
AU - Christoph JUNGEMANN
AU - Stefan KEITH
AU - Martin BARTELS
AU - Bernd MEINERZHAGEN
PY - 1999
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E82-C
IS - 6
JA - IEICE TRANSACTIONS on Electronics
Y1 - June 1999
AB - The full-band Monte Carlo technique is currently the most accurate device simulation method, but its usefulness is limited because it is very CPU intensive. This work describes efficient algorithms in detail, which raise the efficiency of the full-band Monte Carlo method to a level where it becomes applicable in the device design process beyond exemplary simulations. The k-space is discretized with a nonuniform tetrahedral grid, which minimizes the discretization error of the linear energy interpolation and memory requirements. A consistent discretization of the inverse mass tensor is utilized to formulate efficient transport parameter estimators. Particle scattering is modeled in such a way that a very fast rejection technique can be used for the generation of the final state eliminating the main cause of the inefficiency of full-band Monte Carlo simulations. The developed full-band Monte Carlo simulator is highly efficient. For example, in conjunction with the nonself-consistent simulation technique CPU times of a few CPU minutes per bias point are achieved for substrate current calculations. Self-consistent calculations of the drain current of a 60nm-NMOSFET take about a few CPU hours demonstrating the feasibility of full-band Monte Carlo simulations.
ER -