The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Trois idées de base pour améliorer les performances de l'EPRML étendu (EEPRML) sont décrites en détail. Le premier est la modification de la réponse impulsionnelle EEPRML afin de minimiser le taux d'erreur sur les bits des signaux de lecture des canaux d'enregistrement magnétique. Cette modification peut améliorer le rapport signal sur bruit (S/N) du maximum de vraisemblance de réponse partielle étendue conventionnelle (EPRML) d'environ 1 dB. La seconde est l’introduction du code d’exécution de transition (MTR) maximum 16/17 (3 ; 11). Ce code peut éliminer complètement les événements d'erreur de plus de quatre bits consécutifs des événements d'erreur EEPRML modifiés et réduire d'un huitième la probabilité que des événements d'erreur de distance minimale se produisent. Enfin, les événements d'erreur dominants tels que {0e0}, {0ee0}, {0eee0} et {0e00e0} avant le décodage MTR du 16/17 (3,11) peuvent être corrigés en utilisant un code de contrôle de redondance cyclique (CRCC) avec décodage par décision douce. . Le symbole « e » représente une erreur sur un bit, à savoir « 1 » à « 0 » ou vice versa et « 0 » représente un bit correct. Les performances totales ont été évaluées par des simulations informatiques utilisant une forme d'onde isolée similaire aux signaux de lecture réels et un bruit gaussien blanc additif. Par conséquent, il a été confirmé qu'EEPRML modifié avec le code MTR 16/17 (3;11) et CRCC peut améliorer la S/N de l'EPRML conventionnel d'environ 4 dB avec un taux d'erreur binaire de 10-6.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Seiichi MITA, Hideki SAWAGUCHI, Takushi NISHIYA, Naoya KOBAYASHI, "Modified EEPRML with 16/17 (3;11) MTR Code and Cyclic Redundancy Check Code for High Density Magnetic Recording Channels" in IEICE TRANSACTIONS on Electronics,
vol. E82-C, no. 12, pp. 2201-2208, December 1999, doi: .
Abstract: Three basic ideas for enhancing the performance of extended EPRML (EEPRML) are described in detail. The first is the modification of the EEPRML impulse response in order to minimize the bit error rate of read signals from magnetic recording channels. This modification can improve the signal to noise ratio (S/N) of conventional extended partial response maximum likelihood (EPRML) by approximately 1 dB. The second is the introduction of 16/17 (3;11) maximum transition run code (MTR). This code can completely eliminate error events of more than four consecutive bits from modified EEPRML error events, and reduce the probability of minimum distance error events occurring by one eighth. Finally, dominant error events such as {0e0}, {0ee0}, {0eee0}, and {0e00e0} before 16/17 (3,11) MTR decoding can be corrected by employing cyclic redundancy check code (CRCC) with soft decision decoding. The symbol "e" represents one bit error, namely, "1" to "0" or vice versa and "0" represents a correct bit. Total performance has been evaluated by computer simulations using an isolated waveform similar to actual read signals and additive white Gaussian noise. Consequently, it has been confirmed that modified EEPRML with 16/17 (3;11) MTR code and CRCC can improve the S/N of conventional EPRML by approximately 4 dB at a bit error rate of 10-6.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e82-c_12_2201/_p
Copier
@ARTICLE{e82-c_12_2201,
author={Seiichi MITA, Hideki SAWAGUCHI, Takushi NISHIYA, Naoya KOBAYASHI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Modified EEPRML with 16/17 (3;11) MTR Code and Cyclic Redundancy Check Code for High Density Magnetic Recording Channels},
year={1999},
volume={E82-C},
number={12},
pages={2201-2208},
abstract={Three basic ideas for enhancing the performance of extended EPRML (EEPRML) are described in detail. The first is the modification of the EEPRML impulse response in order to minimize the bit error rate of read signals from magnetic recording channels. This modification can improve the signal to noise ratio (S/N) of conventional extended partial response maximum likelihood (EPRML) by approximately 1 dB. The second is the introduction of 16/17 (3;11) maximum transition run code (MTR). This code can completely eliminate error events of more than four consecutive bits from modified EEPRML error events, and reduce the probability of minimum distance error events occurring by one eighth. Finally, dominant error events such as {0e0}, {0ee0}, {0eee0}, and {0e00e0} before 16/17 (3,11) MTR decoding can be corrected by employing cyclic redundancy check code (CRCC) with soft decision decoding. The symbol "e" represents one bit error, namely, "1" to "0" or vice versa and "0" represents a correct bit. Total performance has been evaluated by computer simulations using an isolated waveform similar to actual read signals and additive white Gaussian noise. Consequently, it has been confirmed that modified EEPRML with 16/17 (3;11) MTR code and CRCC can improve the S/N of conventional EPRML by approximately 4 dB at a bit error rate of 10-6.},
keywords={},
doi={},
ISSN={},
month={December},}
Copier
TY - JOUR
TI - Modified EEPRML with 16/17 (3;11) MTR Code and Cyclic Redundancy Check Code for High Density Magnetic Recording Channels
T2 - IEICE TRANSACTIONS on Electronics
SP - 2201
EP - 2208
AU - Seiichi MITA
AU - Hideki SAWAGUCHI
AU - Takushi NISHIYA
AU - Naoya KOBAYASHI
PY - 1999
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E82-C
IS - 12
JA - IEICE TRANSACTIONS on Electronics
Y1 - December 1999
AB - Three basic ideas for enhancing the performance of extended EPRML (EEPRML) are described in detail. The first is the modification of the EEPRML impulse response in order to minimize the bit error rate of read signals from magnetic recording channels. This modification can improve the signal to noise ratio (S/N) of conventional extended partial response maximum likelihood (EPRML) by approximately 1 dB. The second is the introduction of 16/17 (3;11) maximum transition run code (MTR). This code can completely eliminate error events of more than four consecutive bits from modified EEPRML error events, and reduce the probability of minimum distance error events occurring by one eighth. Finally, dominant error events such as {0e0}, {0ee0}, {0eee0}, and {0e00e0} before 16/17 (3,11) MTR decoding can be corrected by employing cyclic redundancy check code (CRCC) with soft decision decoding. The symbol "e" represents one bit error, namely, "1" to "0" or vice versa and "0" represents a correct bit. Total performance has been evaluated by computer simulations using an isolated waveform similar to actual read signals and additive white Gaussian noise. Consequently, it has been confirmed that modified EEPRML with 16/17 (3;11) MTR code and CRCC can improve the S/N of conventional EPRML by approximately 4 dB at a bit error rate of 10-6.
ER -