The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La force électrostatique requise pour l'entraînement d'une gouttelette de liquide injectée dans un microcanal a été étudiée pour obtenir le principe directeur permettant de réduire la tension d'entraînement du commutateur optique du guide d'onde en fonction du mouvement de la gouttelette. Nous avons calculé analytiquement la relation entre la tension de seuil et la vitesse de la gouttelette et la rugosité de la surface du microcanal, et avons clarifié certains paramètres non confirmés en comparant les résultats expérimentaux et l'analyse aéromécanique. L'entraînement des gouttelettes dans un microcanal a été mieux analysé en utilisant la théorie des flux de Hagen-Poiseuille, en tenant compte du mouvement des deux extrémités de la gouttelette. Lorsque la gouttelette est entraînée par une force externe, un seuil de force externe se produit au début du mouvement et une hystérésis se produit dans l'angle de contact de la gouttelette avec la paroi latérale du microcanal. L'hystérésis de l'angle de contact est provoquée par la rugosité de la paroi latérale. Dans notre expérience, la tension de seuil variait de 200 à 350 V et le temps de commutation de 34 à 36 ms. La vitesse des gouttelettes a été évaluée à 0.3-0.4 mm/s à partir de ces résultats expérimentaux. D'autre part, la distribution angulaire mesurée de la rugosité des parois latérales variait de 30 à 110 degrés et la tension de seuil a été évaluée comme étant de 100 à 320 V, ce qui montre un bon accord avec les résultats expérimentaux. La réduction de la tension de seuil peut être réalisée en lissant la rugosité de la paroi latérale du microcanal. Le temps de commutation de 10 ms, requis pour la commutation du flux optique, peut être obtenu en raccourcissant la taille du spot horizontal jusqu'à 1.5 µm.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Takuji IKEMOTO, Yasuo KOKUBUN, "Driving Voltage Analysis for Fast Response of Waveguide Optical Switch Based on Movement of Liquid Droplet Driven by Electrostatic Force" in IEICE TRANSACTIONS on Electronics,
vol. E91-C, no. 12, pp. 1923-1932, December 2008, doi: 10.1093/ietele/e91-c.12.1923.
Abstract: The electrostatic force required for the driving of liquid droplet injected in a microchannel was studied to obtain the guiding principle to reduce the driving voltage of waveguide optical switch based on the movement of droplet. We analytically calculated the relation between the threshold voltage and velocity of droplet and the surface roughness of microchannel, and clarified some unconfirmed parameters by comparing experimental results and aeromechanical analysis. The driving of droplet in a microchannel was best analyzed using the Hagen-Poiseuille flow theory, taking into account the movement of both ends of the droplet. When the droplet is driven by some external force, a threshold of the external force occurs in the starting of movement, and hysteresis occurs in the contact angle of the droplet to the side wall of the microchannel. The hysteresis of contact angle is caused by the roughness of side wall. In our experiment, the threshold voltage ranged from 200 to 350 V and the switching time from 34 to 36 ms. The velocity of droplet was evaluated to be 0.3-0.4 mm/s from these experimental results. On the other hand, the measured angle distribution of side wall roughness ranged from 30 to 110 degrees, and the threshold voltage was evaluated to be 100-320 V, showing a good agreement with experimental results. The reduction of threshold voltage can be realized by smoothing the side wall roughness of microchannel. The switching time of 10 ms, which is required for the optical stream switch, can be obtained by shortening the horizontal spot size down to 1.5 µm.
URL: https://global.ieice.org/en_transactions/electronics/10.1093/ietele/e91-c.12.1923/_p
Copier
@ARTICLE{e91-c_12_1923,
author={Takuji IKEMOTO, Yasuo KOKUBUN, },
journal={IEICE TRANSACTIONS on Electronics},
title={Driving Voltage Analysis for Fast Response of Waveguide Optical Switch Based on Movement of Liquid Droplet Driven by Electrostatic Force},
year={2008},
volume={E91-C},
number={12},
pages={1923-1932},
abstract={The electrostatic force required for the driving of liquid droplet injected in a microchannel was studied to obtain the guiding principle to reduce the driving voltage of waveguide optical switch based on the movement of droplet. We analytically calculated the relation between the threshold voltage and velocity of droplet and the surface roughness of microchannel, and clarified some unconfirmed parameters by comparing experimental results and aeromechanical analysis. The driving of droplet in a microchannel was best analyzed using the Hagen-Poiseuille flow theory, taking into account the movement of both ends of the droplet. When the droplet is driven by some external force, a threshold of the external force occurs in the starting of movement, and hysteresis occurs in the contact angle of the droplet to the side wall of the microchannel. The hysteresis of contact angle is caused by the roughness of side wall. In our experiment, the threshold voltage ranged from 200 to 350 V and the switching time from 34 to 36 ms. The velocity of droplet was evaluated to be 0.3-0.4 mm/s from these experimental results. On the other hand, the measured angle distribution of side wall roughness ranged from 30 to 110 degrees, and the threshold voltage was evaluated to be 100-320 V, showing a good agreement with experimental results. The reduction of threshold voltage can be realized by smoothing the side wall roughness of microchannel. The switching time of 10 ms, which is required for the optical stream switch, can be obtained by shortening the horizontal spot size down to 1.5 µm.},
keywords={},
doi={10.1093/ietele/e91-c.12.1923},
ISSN={1745-1353},
month={December},}
Copier
TY - JOUR
TI - Driving Voltage Analysis for Fast Response of Waveguide Optical Switch Based on Movement of Liquid Droplet Driven by Electrostatic Force
T2 - IEICE TRANSACTIONS on Electronics
SP - 1923
EP - 1932
AU - Takuji IKEMOTO
AU - Yasuo KOKUBUN
PY - 2008
DO - 10.1093/ietele/e91-c.12.1923
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E91-C
IS - 12
JA - IEICE TRANSACTIONS on Electronics
Y1 - December 2008
AB - The electrostatic force required for the driving of liquid droplet injected in a microchannel was studied to obtain the guiding principle to reduce the driving voltage of waveguide optical switch based on the movement of droplet. We analytically calculated the relation between the threshold voltage and velocity of droplet and the surface roughness of microchannel, and clarified some unconfirmed parameters by comparing experimental results and aeromechanical analysis. The driving of droplet in a microchannel was best analyzed using the Hagen-Poiseuille flow theory, taking into account the movement of both ends of the droplet. When the droplet is driven by some external force, a threshold of the external force occurs in the starting of movement, and hysteresis occurs in the contact angle of the droplet to the side wall of the microchannel. The hysteresis of contact angle is caused by the roughness of side wall. In our experiment, the threshold voltage ranged from 200 to 350 V and the switching time from 34 to 36 ms. The velocity of droplet was evaluated to be 0.3-0.4 mm/s from these experimental results. On the other hand, the measured angle distribution of side wall roughness ranged from 30 to 110 degrees, and the threshold voltage was evaluated to be 100-320 V, showing a good agreement with experimental results. The reduction of threshold voltage can be realized by smoothing the side wall roughness of microchannel. The switching time of 10 ms, which is required for the optical stream switch, can be obtained by shortening the horizontal spot size down to 1.5 µm.
ER -