The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article étudie la relation entre le DAS (taux d'absorption spécifique) moyen sur une masse de 10 g et l'élévation de la température dans les modèles anatomiques numériques japonais lorsque les appareils sont montés sur le corps. En simplifiant la source de rayonnement en tant que dipôle demi-onde, le champ électrique généré et le DAS sont calculés à l'aide de la méthode FDTD (Finite-Difference Time-Domain). Ensuite, l'équation de bio-chaleur est résolue pour obtenir l'élévation de température due au SAR dérivé en utilisant la méthode FDTD comme source de chaleur. Les fréquences utilisées dans l'étude sont 900 MHz et 1950 MHz, utilisées pour les téléphones mobiles. De plus, 3500 10 MHz sont pris en compte car cette fréquence est réservée à l'IMT-Advanced (International Mobile Telecommunication-Advanced System). Les résultats informatiques obtenus ici montrent que le DAS moyen de 3500 g et l'élévation de la température ne sont pas proportionnels à la fréquence. De plus, il est clair que ceux à 1950 10 MHz sont inférieurs à ceux à XNUMX XNUMX MHz même si la fréquence est plus élevée. Le point à souligner ici est qu'une bonne corrélation entre le DAS moyen de XNUMX g et l'élévation de la température est observée même pour l'appareil porté sur le corps.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Teruo ONISHI, Takahiro IYAMA, Lira HAMADA, Soichi WATANABE, Akimasa HIRATA, "Evaluation of SAR and Temperature Elevation Using Japanese Anatomical Human Models for Body-Worn Devices" in IEICE TRANSACTIONS on Communications,
vol. E93-B, no. 12, pp. 3643-3646, December 2010, doi: 10.1587/transcom.E93.B.3643.
Abstract: This paper investigates the relationship between averaged SAR (Specific Absorption Rate) over 10 g mass and temperature elevation in Japanese numerical anatomical models when devices are mounted on the body. Simplifying the radiation source as a half-wavelength dipole, the generated electrical field and SAR are calculated using the FDTD (Finite-Difference Time-Domain) method. Then the bio-heat equation is solved to obtain the temperature elevation due to the SAR derived using the FDTD method as heat source. Frequencies used in the study are 900 MHz and 1950 MHz, which are used for mobile phones. In addition, 3500 MHz is considered because this frequency is reserved for IMT-Advanced (International Mobile Telecommunication-Advanced System). Computational results obtained herein show that the 10 g-average SAR and the temperature elevation are not proportional to frequency. In addition, it is clear that those at 3500 MHz are lower than that at 1950 MHz even though the frequency is higher. It is the point to be stressed here is that good correlation between the 10 g-average SAR and the temperature elevation is observed even for the body-worn device.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E93.B.3643/_p
Copier
@ARTICLE{e93-b_12_3643,
author={Teruo ONISHI, Takahiro IYAMA, Lira HAMADA, Soichi WATANABE, Akimasa HIRATA, },
journal={IEICE TRANSACTIONS on Communications},
title={Evaluation of SAR and Temperature Elevation Using Japanese Anatomical Human Models for Body-Worn Devices},
year={2010},
volume={E93-B},
number={12},
pages={3643-3646},
abstract={This paper investigates the relationship between averaged SAR (Specific Absorption Rate) over 10 g mass and temperature elevation in Japanese numerical anatomical models when devices are mounted on the body. Simplifying the radiation source as a half-wavelength dipole, the generated electrical field and SAR are calculated using the FDTD (Finite-Difference Time-Domain) method. Then the bio-heat equation is solved to obtain the temperature elevation due to the SAR derived using the FDTD method as heat source. Frequencies used in the study are 900 MHz and 1950 MHz, which are used for mobile phones. In addition, 3500 MHz is considered because this frequency is reserved for IMT-Advanced (International Mobile Telecommunication-Advanced System). Computational results obtained herein show that the 10 g-average SAR and the temperature elevation are not proportional to frequency. In addition, it is clear that those at 3500 MHz are lower than that at 1950 MHz even though the frequency is higher. It is the point to be stressed here is that good correlation between the 10 g-average SAR and the temperature elevation is observed even for the body-worn device.},
keywords={},
doi={10.1587/transcom.E93.B.3643},
ISSN={1745-1345},
month={December},}
Copier
TY - JOUR
TI - Evaluation of SAR and Temperature Elevation Using Japanese Anatomical Human Models for Body-Worn Devices
T2 - IEICE TRANSACTIONS on Communications
SP - 3643
EP - 3646
AU - Teruo ONISHI
AU - Takahiro IYAMA
AU - Lira HAMADA
AU - Soichi WATANABE
AU - Akimasa HIRATA
PY - 2010
DO - 10.1587/transcom.E93.B.3643
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E93-B
IS - 12
JA - IEICE TRANSACTIONS on Communications
Y1 - December 2010
AB - This paper investigates the relationship between averaged SAR (Specific Absorption Rate) over 10 g mass and temperature elevation in Japanese numerical anatomical models when devices are mounted on the body. Simplifying the radiation source as a half-wavelength dipole, the generated electrical field and SAR are calculated using the FDTD (Finite-Difference Time-Domain) method. Then the bio-heat equation is solved to obtain the temperature elevation due to the SAR derived using the FDTD method as heat source. Frequencies used in the study are 900 MHz and 1950 MHz, which are used for mobile phones. In addition, 3500 MHz is considered because this frequency is reserved for IMT-Advanced (International Mobile Telecommunication-Advanced System). Computational results obtained herein show that the 10 g-average SAR and the temperature elevation are not proportional to frequency. In addition, it is clear that those at 3500 MHz are lower than that at 1950 MHz even though the frequency is higher. It is the point to be stressed here is that good correlation between the 10 g-average SAR and the temperature elevation is observed even for the body-worn device.
ER -