The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cette lettre, un espace propre de topologie de réseau est introduit pour augmenter une capacité spatiale. La topologie du réseau est représentée sous forme de matrice de contiguïté. Grâce à un vecteur propre de matrice de contiguïté, une transmission bidirectionnelle efficace peut être réalisée dans des réseaux distribués sans fil. Il est confirmé par l'analyse numérique que le schéma avec un vecteur propre de matrice de contiguïté fournit une capacité spatiale et une fiabilité supérieures à celles du schéma conventionnel.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Fumie ONO, "Optimized Spatial Capacity by Eigenvalue Decomposition of Adjacency Matrix" in IEICE TRANSACTIONS on Communications,
vol. E93-B, no. 12, pp. 3514-3517, December 2010, doi: 10.1587/transcom.E93.B.3514.
Abstract: In this letter, an eigenspace of network topology is introduced to increase a spatial capacity. The network topology is represented as an adjacency matrix. By an eigenvector of adjacency matrix, efficient two way transmission can be realized in wireless distributed networks. It is confirmed by numerical analysis that the scheme with an eigenvector of adjacency matrix supplies higher spatial capacity and reliability than that of conventional scheme.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E93.B.3514/_p
Copier
@ARTICLE{e93-b_12_3514,
author={Fumie ONO, },
journal={IEICE TRANSACTIONS on Communications},
title={Optimized Spatial Capacity by Eigenvalue Decomposition of Adjacency Matrix},
year={2010},
volume={E93-B},
number={12},
pages={3514-3517},
abstract={In this letter, an eigenspace of network topology is introduced to increase a spatial capacity. The network topology is represented as an adjacency matrix. By an eigenvector of adjacency matrix, efficient two way transmission can be realized in wireless distributed networks. It is confirmed by numerical analysis that the scheme with an eigenvector of adjacency matrix supplies higher spatial capacity and reliability than that of conventional scheme.},
keywords={},
doi={10.1587/transcom.E93.B.3514},
ISSN={1745-1345},
month={December},}
Copier
TY - JOUR
TI - Optimized Spatial Capacity by Eigenvalue Decomposition of Adjacency Matrix
T2 - IEICE TRANSACTIONS on Communications
SP - 3514
EP - 3517
AU - Fumie ONO
PY - 2010
DO - 10.1587/transcom.E93.B.3514
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E93-B
IS - 12
JA - IEICE TRANSACTIONS on Communications
Y1 - December 2010
AB - In this letter, an eigenspace of network topology is introduced to increase a spatial capacity. The network topology is represented as an adjacency matrix. By an eigenvector of adjacency matrix, efficient two way transmission can be realized in wireless distributed networks. It is confirmed by numerical analysis that the scheme with an eigenvector of adjacency matrix supplies higher spatial capacity and reliability than that of conventional scheme.
ER -