The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article présente la régulation et les caractéristiques dynamiques du convertisseur DC-DC avec contrôle numérique PID, le filtre FIR à phase minimale ou le filtre IIR, puis le critère de conception pour améliorer les caractéristiques dynamiques est discuté. En conséquence, il est clarifié que le convertisseur DC-DC utilisant la méthode de filtre IIR présente des caractéristiques de performances supérieures. La plage de régulation est inférieure à 1.3 %, le sous-dépassement par rapport au changement progressif de la charge est inférieur à 2 % et le temps transitoire est inférieur à 0.4 ms avec la méthode de filtre IIR. Dans ce cas, la fréquence de commutation est de 100 kHz et le changement progressif de la charge R est de 50 Ω à 10 Ω . En outre, les caractéristiques supérieures sont obtenues lorsque le premier gain, le second gain et la seconde fréquence de coupure sont relativement grands, et que la première fréquence de coupure et la fréquence de passage sont relativement basses. De plus, il est important que le gain diminue fortement à la deuxième fréquence de coupure car la plage de fréquences passe-bande supérieure doit toujours être inférieure à la moitié de la fréquence d'échantillonnage basée sur la théorie de l'échantillonnage.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Fujio KUROKAWA, Masashi OKAMATSU, "Static and Dynamic Characteristics of DC-DC Converter Using a Digital Filter" in IEICE TRANSACTIONS on Communications,
vol. E92-B, no. 3, pp. 998-1003, March 2009, doi: 10.1587/transcom.E92.B.998.
Abstract: This paper presents the regulation and dynamic characteristics of the dc-dc converter with digital PID control, the minimum phase FIR filter or the IIR filter, and then the design criterion to improve the dynamic characteristics is discussed. As a result, it is clarified that the DC-DC converter using the IIR filter method has superior performance characteristics. The regulation range is within 1.3%, the undershoot against the step change of the load is less than 2% and the transient time is less than 0.4 ms with the IIR filter method. In this case, the switching frequency is 100 kHz and the step change of the load R is from 50 Ω to 10 Ω . Further, the superior characteristics are obtained when the first gain, the second gain and the second cut-off frequency are relatively large, and the first cut-off frequency and the passing frequency are relatively low. Moreover, it is important that the gain strongly decreases at the second cut-off frequency because the upper band pass frequency range must be always less than half of the sampling frequency based on the sampling theory.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E92.B.998/_p
Copier
@ARTICLE{e92-b_3_998,
author={Fujio KUROKAWA, Masashi OKAMATSU, },
journal={IEICE TRANSACTIONS on Communications},
title={Static and Dynamic Characteristics of DC-DC Converter Using a Digital Filter},
year={2009},
volume={E92-B},
number={3},
pages={998-1003},
abstract={This paper presents the regulation and dynamic characteristics of the dc-dc converter with digital PID control, the minimum phase FIR filter or the IIR filter, and then the design criterion to improve the dynamic characteristics is discussed. As a result, it is clarified that the DC-DC converter using the IIR filter method has superior performance characteristics. The regulation range is within 1.3%, the undershoot against the step change of the load is less than 2% and the transient time is less than 0.4 ms with the IIR filter method. In this case, the switching frequency is 100 kHz and the step change of the load R is from 50 Ω to 10 Ω . Further, the superior characteristics are obtained when the first gain, the second gain and the second cut-off frequency are relatively large, and the first cut-off frequency and the passing frequency are relatively low. Moreover, it is important that the gain strongly decreases at the second cut-off frequency because the upper band pass frequency range must be always less than half of the sampling frequency based on the sampling theory.},
keywords={},
doi={10.1587/transcom.E92.B.998},
ISSN={1745-1345},
month={March},}
Copier
TY - JOUR
TI - Static and Dynamic Characteristics of DC-DC Converter Using a Digital Filter
T2 - IEICE TRANSACTIONS on Communications
SP - 998
EP - 1003
AU - Fujio KUROKAWA
AU - Masashi OKAMATSU
PY - 2009
DO - 10.1587/transcom.E92.B.998
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E92-B
IS - 3
JA - IEICE TRANSACTIONS on Communications
Y1 - March 2009
AB - This paper presents the regulation and dynamic characteristics of the dc-dc converter with digital PID control, the minimum phase FIR filter or the IIR filter, and then the design criterion to improve the dynamic characteristics is discussed. As a result, it is clarified that the DC-DC converter using the IIR filter method has superior performance characteristics. The regulation range is within 1.3%, the undershoot against the step change of the load is less than 2% and the transient time is less than 0.4 ms with the IIR filter method. In this case, the switching frequency is 100 kHz and the step change of the load R is from 50 Ω to 10 Ω . Further, the superior characteristics are obtained when the first gain, the second gain and the second cut-off frequency are relatively large, and the first cut-off frequency and the passing frequency are relatively low. Moreover, it is important that the gain strongly decreases at the second cut-off frequency because the upper band pass frequency range must be always less than half of the sampling frequency based on the sampling theory.
ER -