The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article présente les performances du DSTBC lorsqu'il est appliqué à la transmission en liaison descendante de systèmes cellulaires WCDMA dans des canaux à dispersion temporelle à variation rapide. Premièrement, trois architectures de récepteur DSTBC-WCDMA sont proposées : (1) le Récepteur DSTBC Rake pour code combiné (D-Râteau-C), (2) le Récepteur déterministe DSTBC pour code combiné (D-Det-C), et (3) le Récepteur déterministe de dépréfixe DSTBC pour code combiné (D-Dét-DP-C). La détection peut être divisée en un corrélateur combinant désembrouillage et désétalement, et un décodeur DSTBC. Le corrélateur est conçu pour effectuer une séparation du signal multi-trajets-multi-utilisateurs via une estimation des moindres carrés (LS). Pour permettre au corrélateur d'effectuer une séparation des signaux à chaque période de bloc, les codes d'étalement et de brouillage combinés longs sont divisés en codes plus courts. Ensuite, les récepteurs proposés sont théoriquement analysés dans des canaux à dispersion temporelle et dans un environnement multi-utilisateurs en utilisant la fonction de génération de moment (MGF) des distributions d'évanouissements. Pour analyser la tolérance aux interférences, l’approximation gaussienne standard est utilisée. Enfin, des simulations sont effectuées. Les performances théoriques correspondent bien aux résultats simulés. Parmi les trois récepteurs, le récepteur D-Det-DP-C présente les meilleures performances dans les canaux à dispersion temporelle avec un retard excédentaire maximum de 4 chips et une fréquence Doppler maximale de 250 Hz. Les résultats montrent également une dégradation minime des performances pour les canaux à évanouissement rapide avec une fréquence Doppler maximale de 1200 XNUMX Hz. Les meilleures performances sont obtenues lorsque le récepteur dispose de l'information sur le délai excédentaire maximum et des codes d'étalement de tous les utilisateurs.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Edwin M. UMALI, Joel Joseph S. MARCIANO, Jr., Yasushi YAMAO, "Performance of Downlink DSTBC-WCDMA in Fast-Varying Time-Dispersive Channels" in IEICE TRANSACTIONS on Communications,
vol. E92-B, no. 12, pp. 3815-3826, December 2009, doi: 10.1587/transcom.E92.B.3815.
Abstract: This paper presents the performance of DSTBC when applied on the downlink transmission of WCDMA cellular systems in fast-varying time-dispersive channels. First, three DSTBC-WCDMA receiver architectures are proposed and they are: (1) the DSTBC Rake receiver for combined-code (D-Rake-C), (2) the DSTBC deterministic receiver for combined-code (D-Det-C), and (3) the DSTBC deterministic de-prefix receiver for combined-code (D-Det-DP-C). Detection can be divided into a correlator that combines descrambling and despreading, and a DSTBC decoder. The correlator is designed to perform signal separation of the multipath-multiuser signal via least-square (LS) estimation. To enable the correlator to perform signal separation at every block period, the long combined spreading and scrambling codes are divided into shorter codes. Then, the proposed receivers are theoretically analyzed in time-dispersive channels and multiple-user environment using the moment generating function (MGF) of fading distributions. For analyzing interference tolerance, the standard Gaussian approximation is employed. Finally, simulations are performed. Theoretical performance well matches simulated results. Among the three receivers, the D-Det-DP-C receiver has the best performance in time-dispersive channels with a maximum excess delay of 4 chips and a maximum Doppler frequency of 250 Hz. Results also show minimal performance degradation for fast fading channels with a maximum Doppler frequency of 1200 Hz. The best performance is obtained when the receiver has the information on the maximum excess delay and all users' spreading codes.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E92.B.3815/_p
Copier
@ARTICLE{e92-b_12_3815,
author={Edwin M. UMALI, Joel Joseph S. MARCIANO, Jr., Yasushi YAMAO, },
journal={IEICE TRANSACTIONS on Communications},
title={Performance of Downlink DSTBC-WCDMA in Fast-Varying Time-Dispersive Channels},
year={2009},
volume={E92-B},
number={12},
pages={3815-3826},
abstract={This paper presents the performance of DSTBC when applied on the downlink transmission of WCDMA cellular systems in fast-varying time-dispersive channels. First, three DSTBC-WCDMA receiver architectures are proposed and they are: (1) the DSTBC Rake receiver for combined-code (D-Rake-C), (2) the DSTBC deterministic receiver for combined-code (D-Det-C), and (3) the DSTBC deterministic de-prefix receiver for combined-code (D-Det-DP-C). Detection can be divided into a correlator that combines descrambling and despreading, and a DSTBC decoder. The correlator is designed to perform signal separation of the multipath-multiuser signal via least-square (LS) estimation. To enable the correlator to perform signal separation at every block period, the long combined spreading and scrambling codes are divided into shorter codes. Then, the proposed receivers are theoretically analyzed in time-dispersive channels and multiple-user environment using the moment generating function (MGF) of fading distributions. For analyzing interference tolerance, the standard Gaussian approximation is employed. Finally, simulations are performed. Theoretical performance well matches simulated results. Among the three receivers, the D-Det-DP-C receiver has the best performance in time-dispersive channels with a maximum excess delay of 4 chips and a maximum Doppler frequency of 250 Hz. Results also show minimal performance degradation for fast fading channels with a maximum Doppler frequency of 1200 Hz. The best performance is obtained when the receiver has the information on the maximum excess delay and all users' spreading codes.},
keywords={},
doi={10.1587/transcom.E92.B.3815},
ISSN={1745-1345},
month={December},}
Copier
TY - JOUR
TI - Performance of Downlink DSTBC-WCDMA in Fast-Varying Time-Dispersive Channels
T2 - IEICE TRANSACTIONS on Communications
SP - 3815
EP - 3826
AU - Edwin M. UMALI
AU - Joel Joseph S. MARCIANO
AU - Jr.
AU - Yasushi YAMAO
PY - 2009
DO - 10.1587/transcom.E92.B.3815
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E92-B
IS - 12
JA - IEICE TRANSACTIONS on Communications
Y1 - December 2009
AB - This paper presents the performance of DSTBC when applied on the downlink transmission of WCDMA cellular systems in fast-varying time-dispersive channels. First, three DSTBC-WCDMA receiver architectures are proposed and they are: (1) the DSTBC Rake receiver for combined-code (D-Rake-C), (2) the DSTBC deterministic receiver for combined-code (D-Det-C), and (3) the DSTBC deterministic de-prefix receiver for combined-code (D-Det-DP-C). Detection can be divided into a correlator that combines descrambling and despreading, and a DSTBC decoder. The correlator is designed to perform signal separation of the multipath-multiuser signal via least-square (LS) estimation. To enable the correlator to perform signal separation at every block period, the long combined spreading and scrambling codes are divided into shorter codes. Then, the proposed receivers are theoretically analyzed in time-dispersive channels and multiple-user environment using the moment generating function (MGF) of fading distributions. For analyzing interference tolerance, the standard Gaussian approximation is employed. Finally, simulations are performed. Theoretical performance well matches simulated results. Among the three receivers, the D-Det-DP-C receiver has the best performance in time-dispersive channels with a maximum excess delay of 4 chips and a maximum Doppler frequency of 250 Hz. Results also show minimal performance degradation for fast fading channels with a maximum Doppler frequency of 1200 Hz. The best performance is obtained when the receiver has the information on the maximum excess delay and all users' spreading codes.
ER -