The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
L'invention concerne un procédé de correction d'erreur de quantification à complexité réduite pour le précodage vectoriel assisté par réduction de réseau (LRA). Pour le précodage vectoriel LRA, la procédure d'approximation de Babai peut générer des erreurs de quantification entraînant une perte de performances. Au lieu de dresser une liste pour corriger toutes les erreurs possibles comme c'est le cas dans le schéma existant, nous proposons une nouvelle méthode dans laquelle seul un sous-ensemble de toutes les erreurs possibles est corrigé. La taille du sous-ensemble est déterminée par la distribution de probabilité du nombre d'erreurs réelles. Ainsi, la complexité de calcul de notre procédure de correction est réduite avec peu de perte de performances par rapport au schéma de correction existant.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Xuan GENG , Ling-ge JIANG, Chen HE, "A Reduced Complexity Quantization Error Correction Method for Lattice Reduction Aided Vector Precoding" in IEICE TRANSACTIONS on Communications,
vol. E92-B, no. 7, pp. 2525-2528, July 2009, doi: 10.1587/transcom.E92.B.2525.
Abstract: A reduced complexity quantization error correction method for lattice reduction aided (LRA) vector precoding is proposed. For LRA vector precoding,Babai's approximation procedure can generate quantization errors leading to performance loss. Instead of making a list to correct all possible errors as is done in the existing scheme, we propose a novel method in which only a subset of all possible errors are corrected. The size of the subset is determined by the probability distribution of the number of actual errors. Thus, the computation complexity of our correction procedure is reduced with little performance loss compared with the existing correction scheme.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E92.B.2525/_p
Copier
@ARTICLE{e92-b_7_2525,
author={Xuan GENG , Ling-ge JIANG, Chen HE, },
journal={IEICE TRANSACTIONS on Communications},
title={A Reduced Complexity Quantization Error Correction Method for Lattice Reduction Aided Vector Precoding},
year={2009},
volume={E92-B},
number={7},
pages={2525-2528},
abstract={A reduced complexity quantization error correction method for lattice reduction aided (LRA) vector precoding is proposed. For LRA vector precoding,Babai's approximation procedure can generate quantization errors leading to performance loss. Instead of making a list to correct all possible errors as is done in the existing scheme, we propose a novel method in which only a subset of all possible errors are corrected. The size of the subset is determined by the probability distribution of the number of actual errors. Thus, the computation complexity of our correction procedure is reduced with little performance loss compared with the existing correction scheme.},
keywords={},
doi={10.1587/transcom.E92.B.2525},
ISSN={1745-1345},
month={July},}
Copier
TY - JOUR
TI - A Reduced Complexity Quantization Error Correction Method for Lattice Reduction Aided Vector Precoding
T2 - IEICE TRANSACTIONS on Communications
SP - 2525
EP - 2528
AU - Xuan GENG
AU - Ling-ge JIANG
AU - Chen HE
PY - 2009
DO - 10.1587/transcom.E92.B.2525
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E92-B
IS - 7
JA - IEICE TRANSACTIONS on Communications
Y1 - July 2009
AB - A reduced complexity quantization error correction method for lattice reduction aided (LRA) vector precoding is proposed. For LRA vector precoding,Babai's approximation procedure can generate quantization errors leading to performance loss. Instead of making a list to correct all possible errors as is done in the existing scheme, we propose a novel method in which only a subset of all possible errors are corrected. The size of the subset is determined by the probability distribution of the number of actual errors. Thus, the computation complexity of our correction procedure is reduced with little performance loss compared with the existing correction scheme.
ER -