The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Un mode de fonctionnement efficace et une technique de synchronisation espace-temps pour le radar hybride bistatique à synthèse d'ouverture spatioporté/aéroporté (SA-BSAR) utilisant des sources d'opportunité sont présentés. Notre motivation réside dans le fait que les approches existantes dans la littérature, où l'antenne de l'émetteur doit être orientable, ne peuvent être utilisées que dans les systèmes SAR bistatiques hybrides avec émetteur coopératif. Le mode présenté consiste à élargir le faisceau de réception dans le but d'augmenter l'extension de la scène en azimut. L'inspiration vient de la distance de réception beaucoup plus courte par rapport à celle du SAR spatial monostatique. Cela signifie que le gain de réception peut être considérablement réduit pour fournir le même rapport signal/bruit (SNR) par rapport au boîtier monostatique. La faisabilité du mode faisceau large est d'abord vérifiée au préalable par une analyse quantitative du SNR et une démonstration que la fréquence de répétition des impulsions (PRF) utilisée dans l'illuminateur spatial peut facilement satisfaire aux contraintes PRF du SA-BSAR. L'influence sur le rapport ambiguïté azimut/signal (AASR) est également discutée et le facteur d'élargissement correspondant de la largeur maximale autorisée pour la largeur du faisceau du récepteur est ensuite dérivé. Ensuite, les formules de calcul du temps de recouvrement, de l'extension de la scène et de la résolution en azimut sont déduites. Comme il n'y a pas de lobes de réseau dans le diagramme d'antenne du satellite puisque l'illuminateur non coopératif fonctionne normalement en mode latéral, une technique existante pour la synchronisation espace-temps dans des systèmes hybrides coopératifs ne peut pas être directement appliquée. La modification effectuée et son principe sous-jacent sont présentés en détail. Les résultats de la simulation démontrent l'efficacité du mode faisceau large et montrent que dans la plupart des cas, une extension utile de la scène (de l'ordre d'au moins 1 km) peut être obtenue avec une résolution azimutale à peu près équivalente à celle du mode mono-faisceau. SAR spatial statique. Dans certains cas, des mesures explicites visant à supprimer l’ambiguïté d’azimut doivent être prises pour obtenir l’extension de scène attendue.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Peng ZHOU, Yiming PI, "Wide-Beam Mode and Space-Time Synchronization of Antenna Footprints in Hybrid Bistatic SAR Systems Using Sources of Opportunity" in IEICE TRANSACTIONS on Communications,
vol. E92-B, no. 4, pp. 1308-1317, April 2009, doi: 10.1587/transcom.E92.B.1308.
Abstract: An effective operation mode and a space-time synchronization technique for the spaceborne/airborne hybrid bistatic synthetic aperture radar (SA-BSAR) using sources of opportunity are presented. Our motivation lies in the fact that the existing approaches in the literature, where the transmitter antenna must be steered, can only be used in the hybrid bistatic SAR systems with cooperative transmitter. The presented mode is to widen the receiving beam for the purpose to increase the scene extension in azimuth. The inspiration comes from the much shorter receiving distance as compared to the one in mono-static spaceborne SAR. This means that the receiving gain can be significantly reduced to provide the same signal-to-noise ratio (SNR) with respect to the mono-static case. The feasibility of the wide-beam mode is first preliminarily verified by a quantitative analysis of SNR and a demonstration that the pulse repetition frequency (PRF) used in the spaceborne illuminator can easily satisfy the PRF constraints of the SA-BSAR. The influence on the azimuth ambiguity to signal ratio (AASR) is also discussed and the corresponding broadening factor of the maximum allowable for receiver beamwidth is subsequently derived. Afterwards, the formulae for calculating the overlap time, the scene extension and the azimuth resolution are deduced. As there are no grating lobes in satellite antenna pattern since the non-cooperative illuminator normally operates in the side-looking mode, an existing technique for the space-time synchronization in cooperative hybrid systems can not be directly applied. The modification performed and its underlying principle are presented in detail. The simulation results demonstrate the effectiveness of the wide-beam mode, and show that in most cases a useful scene extension (on the order of at least 1 km) can be achieved with a roughly equivalent azimuth resolution as compared to the one in mono-static spaceborne SAR. In some cases, explicit measures to suppress the azimuth ambiguity must be taken to achieve the expected scene extension.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E92.B.1308/_p
Copier
@ARTICLE{e92-b_4_1308,
author={Peng ZHOU, Yiming PI, },
journal={IEICE TRANSACTIONS on Communications},
title={Wide-Beam Mode and Space-Time Synchronization of Antenna Footprints in Hybrid Bistatic SAR Systems Using Sources of Opportunity},
year={2009},
volume={E92-B},
number={4},
pages={1308-1317},
abstract={An effective operation mode and a space-time synchronization technique for the spaceborne/airborne hybrid bistatic synthetic aperture radar (SA-BSAR) using sources of opportunity are presented. Our motivation lies in the fact that the existing approaches in the literature, where the transmitter antenna must be steered, can only be used in the hybrid bistatic SAR systems with cooperative transmitter. The presented mode is to widen the receiving beam for the purpose to increase the scene extension in azimuth. The inspiration comes from the much shorter receiving distance as compared to the one in mono-static spaceborne SAR. This means that the receiving gain can be significantly reduced to provide the same signal-to-noise ratio (SNR) with respect to the mono-static case. The feasibility of the wide-beam mode is first preliminarily verified by a quantitative analysis of SNR and a demonstration that the pulse repetition frequency (PRF) used in the spaceborne illuminator can easily satisfy the PRF constraints of the SA-BSAR. The influence on the azimuth ambiguity to signal ratio (AASR) is also discussed and the corresponding broadening factor of the maximum allowable for receiver beamwidth is subsequently derived. Afterwards, the formulae for calculating the overlap time, the scene extension and the azimuth resolution are deduced. As there are no grating lobes in satellite antenna pattern since the non-cooperative illuminator normally operates in the side-looking mode, an existing technique for the space-time synchronization in cooperative hybrid systems can not be directly applied. The modification performed and its underlying principle are presented in detail. The simulation results demonstrate the effectiveness of the wide-beam mode, and show that in most cases a useful scene extension (on the order of at least 1 km) can be achieved with a roughly equivalent azimuth resolution as compared to the one in mono-static spaceborne SAR. In some cases, explicit measures to suppress the azimuth ambiguity must be taken to achieve the expected scene extension.},
keywords={},
doi={10.1587/transcom.E92.B.1308},
ISSN={1745-1345},
month={April},}
Copier
TY - JOUR
TI - Wide-Beam Mode and Space-Time Synchronization of Antenna Footprints in Hybrid Bistatic SAR Systems Using Sources of Opportunity
T2 - IEICE TRANSACTIONS on Communications
SP - 1308
EP - 1317
AU - Peng ZHOU
AU - Yiming PI
PY - 2009
DO - 10.1587/transcom.E92.B.1308
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E92-B
IS - 4
JA - IEICE TRANSACTIONS on Communications
Y1 - April 2009
AB - An effective operation mode and a space-time synchronization technique for the spaceborne/airborne hybrid bistatic synthetic aperture radar (SA-BSAR) using sources of opportunity are presented. Our motivation lies in the fact that the existing approaches in the literature, where the transmitter antenna must be steered, can only be used in the hybrid bistatic SAR systems with cooperative transmitter. The presented mode is to widen the receiving beam for the purpose to increase the scene extension in azimuth. The inspiration comes from the much shorter receiving distance as compared to the one in mono-static spaceborne SAR. This means that the receiving gain can be significantly reduced to provide the same signal-to-noise ratio (SNR) with respect to the mono-static case. The feasibility of the wide-beam mode is first preliminarily verified by a quantitative analysis of SNR and a demonstration that the pulse repetition frequency (PRF) used in the spaceborne illuminator can easily satisfy the PRF constraints of the SA-BSAR. The influence on the azimuth ambiguity to signal ratio (AASR) is also discussed and the corresponding broadening factor of the maximum allowable for receiver beamwidth is subsequently derived. Afterwards, the formulae for calculating the overlap time, the scene extension and the azimuth resolution are deduced. As there are no grating lobes in satellite antenna pattern since the non-cooperative illuminator normally operates in the side-looking mode, an existing technique for the space-time synchronization in cooperative hybrid systems can not be directly applied. The modification performed and its underlying principle are presented in detail. The simulation results demonstrate the effectiveness of the wide-beam mode, and show that in most cases a useful scene extension (on the order of at least 1 km) can be achieved with a roughly equivalent azimuth resolution as compared to the one in mono-static spaceborne SAR. In some cases, explicit measures to suppress the azimuth ambiguity must be taken to achieve the expected scene extension.
ER -