The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Le MIMO massif sans cellule (CF-mMIMO), qui utilise de manière coopérative un grand nombre d'antennes déployées sur une zone de communication, suscite une grande attention en tant que technologie importante pour la réalisation de systèmes 5G avancés et 6G. Récemment, pour garantir l'évolutivité du système et atténuer les interférences entre utilisateurs dans CF-mMIMO, une approche centrée sur l'utilisateur (UC) a été étudiée. Dans cette approche UC, des ensembles d'antennes centrés sur l'utilisateur sont formés en sélectionnant les antennes appropriées pour chaque utilisateur, et le postcodage est appliqué pour réduire les fortes interférences provenant des utilisateurs dont les ensembles d'antennes se chevauchent. Cependant, dans des environnements à très forte densité d'utilisateurs, étant donné que le nombre d'utilisateurs brouilleurs augmente en raison du chevauchement accru des ensembles d'antennes, la capacité de liaison réalisable peut se dégrader. Dans cet article, nous proposons une approche centrée sur le cluster d'utilisateurs (UCC), qui regroupe les utilisateurs du quartier dans un cluster d'utilisateurs et associe le nombre prédéterminé d'antennes à ce cluster d'utilisateurs pour le multiplexage spatial. Nous dérivons les poids de postcodage de liaison montante et expliquons l'efficacité de l'approche UCC proposée en termes de complexité informatique du calcul des poids. Nous comparons également les capacités des utilisateurs de liaison montante réalisables avec les approches UC et UCC par simulation informatique et clarifions les situations dans lesquelles l'approche UCC est efficace. En outre, nous discutons de l’impact du nombre d’utilisateurs interférents pris en compte dans le calcul du poids de postcodage avec forçage nul et erreur quadratique moyenne minimale sur la capacité des utilisateurs.
Ryo TAKAHASHI
Tohoku University
Hidenori MATSUO
Tohoku University
Sijie XIA
Tohoku University
Qiang CHEN
Tohoku University
Fumiyuki ADACHI
Tohoku University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Ryo TAKAHASHI, Hidenori MATSUO, Sijie XIA, Qiang CHEN, Fumiyuki ADACHI, "Uplink Postcoding in User-Cluster-Centric Cell-Free Massive MIMO" in IEICE TRANSACTIONS on Communications,
vol. E106-B, no. 9, pp. 748-757, September 2023, doi: 10.1587/transcom.2022FGT0001.
Abstract: Cell-free massive MIMO (CF-mMIMO), which cooperatively utilizes a large number of antennas deployed over a communication area, has been attracting great attention as an important technology for realizing 5G-advanced and 6G systems. Recently, to ensure system scalability and mitigate inter-user interference in CF-mMIMO, a user-centric (UC) approach was investigated. In this UC approach, user-centric antenna-sets are formed by selecting appropriate antennas for each user, and postcoding is applied to reduce the strong interference from users whose antenna-sets overlap. However, in very high user density environments, since the number of interfering users increases due to increased overlapping of antenna-sets, the achievable link capacity may degrade. In this paper, we propose a user-cluster-centric (UCC) approach, which groups neighborhood users into a user-cluster and associates the predetermined number of antennas to this user-cluster for spatial multiplexing. We derive the uplink postcoding weights and explain the effectiveness of the proposed UCC approach in terms of the computational complexity of the weight computation. We also compare the uplink user capacities achievable with UC and UCC approaches by computer simulation and clarify situations where the UCC approach is effective. Furthermore, we discuss the impact of the number of interfering users considered in the zero-forcing and minimum mean square error postcoding weight computation on the user capacity.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2022FGT0001/_p
Copier
@ARTICLE{e106-b_9_748,
author={Ryo TAKAHASHI, Hidenori MATSUO, Sijie XIA, Qiang CHEN, Fumiyuki ADACHI, },
journal={IEICE TRANSACTIONS on Communications},
title={Uplink Postcoding in User-Cluster-Centric Cell-Free Massive MIMO},
year={2023},
volume={E106-B},
number={9},
pages={748-757},
abstract={Cell-free massive MIMO (CF-mMIMO), which cooperatively utilizes a large number of antennas deployed over a communication area, has been attracting great attention as an important technology for realizing 5G-advanced and 6G systems. Recently, to ensure system scalability and mitigate inter-user interference in CF-mMIMO, a user-centric (UC) approach was investigated. In this UC approach, user-centric antenna-sets are formed by selecting appropriate antennas for each user, and postcoding is applied to reduce the strong interference from users whose antenna-sets overlap. However, in very high user density environments, since the number of interfering users increases due to increased overlapping of antenna-sets, the achievable link capacity may degrade. In this paper, we propose a user-cluster-centric (UCC) approach, which groups neighborhood users into a user-cluster and associates the predetermined number of antennas to this user-cluster for spatial multiplexing. We derive the uplink postcoding weights and explain the effectiveness of the proposed UCC approach in terms of the computational complexity of the weight computation. We also compare the uplink user capacities achievable with UC and UCC approaches by computer simulation and clarify situations where the UCC approach is effective. Furthermore, we discuss the impact of the number of interfering users considered in the zero-forcing and minimum mean square error postcoding weight computation on the user capacity.},
keywords={},
doi={10.1587/transcom.2022FGT0001},
ISSN={1745-1345},
month={September},}
Copier
TY - JOUR
TI - Uplink Postcoding in User-Cluster-Centric Cell-Free Massive MIMO
T2 - IEICE TRANSACTIONS on Communications
SP - 748
EP - 757
AU - Ryo TAKAHASHI
AU - Hidenori MATSUO
AU - Sijie XIA
AU - Qiang CHEN
AU - Fumiyuki ADACHI
PY - 2023
DO - 10.1587/transcom.2022FGT0001
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E106-B
IS - 9
JA - IEICE TRANSACTIONS on Communications
Y1 - September 2023
AB - Cell-free massive MIMO (CF-mMIMO), which cooperatively utilizes a large number of antennas deployed over a communication area, has been attracting great attention as an important technology for realizing 5G-advanced and 6G systems. Recently, to ensure system scalability and mitigate inter-user interference in CF-mMIMO, a user-centric (UC) approach was investigated. In this UC approach, user-centric antenna-sets are formed by selecting appropriate antennas for each user, and postcoding is applied to reduce the strong interference from users whose antenna-sets overlap. However, in very high user density environments, since the number of interfering users increases due to increased overlapping of antenna-sets, the achievable link capacity may degrade. In this paper, we propose a user-cluster-centric (UCC) approach, which groups neighborhood users into a user-cluster and associates the predetermined number of antennas to this user-cluster for spatial multiplexing. We derive the uplink postcoding weights and explain the effectiveness of the proposed UCC approach in terms of the computational complexity of the weight computation. We also compare the uplink user capacities achievable with UC and UCC approaches by computer simulation and clarify situations where the UCC approach is effective. Furthermore, we discuss the impact of the number of interfering users considered in the zero-forcing and minimum mean square error postcoding weight computation on the user capacity.
ER -