The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Vues en texte intégral
147
Dans cet article, une analyse géométrique stochasique du réglage inversement proportionnel (IPS) du seuil de détection de la porteuse (CST) et de la puissance de transmission pour les réseaux locaux sans fil (WLAN) densément déployés est présentée. Dans les WLAN densément déployés, l'ajustement CST est une technologie cruciale pour améliorer la réutilisation spatiale, mais il peut affamer les émetteurs environnants en raison d'une relation asymétrique de détection de porteuse. Pour que la relation de détection de porteuse soit symétrique, l'IPS du CST et de la puissance d'émission constitue une approche prometteuse, c'est-à-dire que chaque émetteur ajuste conjointement son CST et sa puissance d'émission afin que leur produit soit égal à celui des autres. Ce paramètre est utilisé pour la réutilisation spatiale dans IEEE 802.11ax. En supposant que l'ensemble des émetteurs potentiels suit un processus de point de Poisson, l'impact de l'IPS sur le débit est formulé sur la base d'une géométrie stochastique dans deux scénarios : un ajustement au niveau d'un seul émetteur et un ajustement identique au niveau de tous les émetteurs. L'expression asymptotique du débit dans les WLAN denses est dérivée et une solution explicite du CST optimal est obtenue en fonction du nombre d'émetteurs potentiels voisins et du rapport puissance signal/interférence à l'aide d'approximations. Cette solution a été confirmée par des résultats numériques, où la solution explicite a obtenu des pénalités de débit inférieures à 8 % par rapport à la solution optimale évaluée numériquement.
Koji YAMAMOTO
Kyoto University
Takayuki NISHIO
Tokyo Institute of Technology
Masahiro MORIKURA
Kyoto University
Hirantha ABEYSEKERA
NTT Corporation
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Koji YAMAMOTO, Takayuki NISHIO, Masahiro MORIKURA, Hirantha ABEYSEKERA, "Stochastic Geometry Analysis of Inversely Proportional Carrier Sense Threshold and Transmission Power for WLAN Spatial Reuse" in IEICE TRANSACTIONS on Communications,
vol. E104-B, no. 10, pp. 1345-1353, October 2021, doi: 10.1587/transcom.2020EBT0009.
Abstract: In this paper, a stochasic geometry analysis of the inversely proportional setting (IPS) of carrier sense threshold (CST) and transmission power for densely deployed wireless local area networks (WLANs) is presented. In densely deployed WLANs, CST adjustment is a crucial technology to enhance spatial reuse, but it can starve surrounding transmitters due to an asymmetric carrier sensing relationship. In order for the carrier sensing relationship to be symmetric, the IPS of the CST and transmission power is a promising approach, i.e., each transmitter jointly adjusts its CST and transmission power in order for their product to be equal to those of others. This setting is used for spatial reuse in IEEE 802.11ax. By assuming that the set of potential transmitters follows a Poisson point process, the impact of the IPS on throughput is formulated based on stochastic geometry in two scenarios: an adjustment at a single transmitter and an identical adjustment at all transmitters. The asymptotic expression of the throughput in dense WLANs is derived and an explicit solution of the optimal CST is achieved as a function of the number of neighboring potential transmitters and signal-to-interference power ratio using approximations. This solution was confirmed through numerical results, where the explicit solution achieved throughput penalties of less than 8% relative to the numerically evaluated optimal solution.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2020EBT0009/_p
Copier
@ARTICLE{e104-b_10_1345,
author={Koji YAMAMOTO, Takayuki NISHIO, Masahiro MORIKURA, Hirantha ABEYSEKERA, },
journal={IEICE TRANSACTIONS on Communications},
title={Stochastic Geometry Analysis of Inversely Proportional Carrier Sense Threshold and Transmission Power for WLAN Spatial Reuse},
year={2021},
volume={E104-B},
number={10},
pages={1345-1353},
abstract={In this paper, a stochasic geometry analysis of the inversely proportional setting (IPS) of carrier sense threshold (CST) and transmission power for densely deployed wireless local area networks (WLANs) is presented. In densely deployed WLANs, CST adjustment is a crucial technology to enhance spatial reuse, but it can starve surrounding transmitters due to an asymmetric carrier sensing relationship. In order for the carrier sensing relationship to be symmetric, the IPS of the CST and transmission power is a promising approach, i.e., each transmitter jointly adjusts its CST and transmission power in order for their product to be equal to those of others. This setting is used for spatial reuse in IEEE 802.11ax. By assuming that the set of potential transmitters follows a Poisson point process, the impact of the IPS on throughput is formulated based on stochastic geometry in two scenarios: an adjustment at a single transmitter and an identical adjustment at all transmitters. The asymptotic expression of the throughput in dense WLANs is derived and an explicit solution of the optimal CST is achieved as a function of the number of neighboring potential transmitters and signal-to-interference power ratio using approximations. This solution was confirmed through numerical results, where the explicit solution achieved throughput penalties of less than 8% relative to the numerically evaluated optimal solution.},
keywords={},
doi={10.1587/transcom.2020EBT0009},
ISSN={1745-1345},
month={October},}
Copier
TY - JOUR
TI - Stochastic Geometry Analysis of Inversely Proportional Carrier Sense Threshold and Transmission Power for WLAN Spatial Reuse
T2 - IEICE TRANSACTIONS on Communications
SP - 1345
EP - 1353
AU - Koji YAMAMOTO
AU - Takayuki NISHIO
AU - Masahiro MORIKURA
AU - Hirantha ABEYSEKERA
PY - 2021
DO - 10.1587/transcom.2020EBT0009
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E104-B
IS - 10
JA - IEICE TRANSACTIONS on Communications
Y1 - October 2021
AB - In this paper, a stochasic geometry analysis of the inversely proportional setting (IPS) of carrier sense threshold (CST) and transmission power for densely deployed wireless local area networks (WLANs) is presented. In densely deployed WLANs, CST adjustment is a crucial technology to enhance spatial reuse, but it can starve surrounding transmitters due to an asymmetric carrier sensing relationship. In order for the carrier sensing relationship to be symmetric, the IPS of the CST and transmission power is a promising approach, i.e., each transmitter jointly adjusts its CST and transmission power in order for their product to be equal to those of others. This setting is used for spatial reuse in IEEE 802.11ax. By assuming that the set of potential transmitters follows a Poisson point process, the impact of the IPS on throughput is formulated based on stochastic geometry in two scenarios: an adjustment at a single transmitter and an identical adjustment at all transmitters. The asymptotic expression of the throughput in dense WLANs is derived and an explicit solution of the optimal CST is achieved as a function of the number of neighboring potential transmitters and signal-to-interference power ratio using approximations. This solution was confirmed through numerical results, where the explicit solution achieved throughput penalties of less than 8% relative to the numerically evaluated optimal solution.
ER -