The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Les systèmes de communication fonctionnant dans la bande des ondes millimétriques (mmWave) ont le potentiel de réaliser des communications de véhicule à véhicule (V2V) à très haut débit et à très faible latence dans la 5G et au-delà des réseaux sans fil. De plus, en raison de la faible pénétration des ondes mm, un canal mmWave peut être réutilisé dans toutes les liaisons V2V, ce qui améliore l'efficacité spectrale. Bien que les performances exceptionnelles du mmWave ci-dessus aient été largement reconnues, il existe encore certaines lacunes. L’un des défauts inévitables est l’interférence par trajets multiples. Même si le lien d'interférence direct ne peut pas pénétrer dans les carrosseries des véhicules, d'autres interférences dégradent le débit de la communication mmWave V2V. Dans cet article, nous nous concentrons sur les interférences par trajets multiples provoquées par les réflexions des signaux provenant des routes et de leurs environs, où la force des interférences varie selon les scénarios routiers. Tout d'abord, nous analysons les modèles de canaux multitrajets de mmWave V2V avec relais dans trois scénarios routiers typiques (routes droites simples, courbes horizontales et pentes). Leurs différences d'interférence sont clarifiées. Sur la base de l'analyse, une nouvelle méthode de configuration d'antenne ZigZag est proposée pour garantir le débit de données requis. Dans un deuxième temps, les performances de la méthode proposée sont évaluées par simulation. Cela prouve que la configuration d'antenne ZigZag avec une hauteur d'antenne optimale peut supprimer considérablement les interférences destructrices et garantir un débit supérieur à 1 Gbit/s par rapport à la configuration d'antenne conventionnelle dans la bande de 60 GHz. De plus, l'efficacité de la configuration de l'antenne ZigZag est démontrée sur une seule route droite par des expériences en extérieur.
Yue YIN
the Tokyo Institute of Technology
Haoze CHEN
the Rice University
Zongdian LI
the Tokyo Institute of Technology
Tao YU
the Tokyo Institute of Technology
Kei SAKAGUCHI
the Tokyo Institute of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Yue YIN, Haoze CHEN, Zongdian LI, Tao YU, Kei SAKAGUCHI, "ZigZag Antenna Configuration for MmWave V2V with Relay in Typical Road Scenarios: Design, Analysis and Experiment" in IEICE TRANSACTIONS on Communications,
vol. E104-B, no. 10, pp. 1307-1317, October 2021, doi: 10.1587/transcom.2020EBP3170.
Abstract: Communication systems operating in the millimeter-wave (mmWave) band have the potential to realize ultra-high throughput and ultra-low latency vehicle-to-vehicle (V2V) communications in 5G and beyond wireless networks. Moreover, because of the weak penetration nature of mmWave, one mmWave channel can be reused in all V2V links, which improves the spectrum efficiency. Although the outstanding performance of the mmWave above has been widely acknowledged, there are still some shortcomings. One of the unavoidable defects is multipath interference. Even though the direct interference link cannot penetrate vehicle bodies, other interference degrades the throughput of the mmWave V2V communication. In this paper, we focus on the multipath interference caused by signal reflections from roads and surroundings, where the interference strength varies in road scenarios. Firstly, we analyze the multipath channel models of mmWave V2V with relay in three typical road scenarios (single straight roads, horizontal curves, and slopes). Their interference differences are clarified. Based on the analysis, a novel method of ZigZag antenna configuration is proposed to guarantee the required data rate. Secondly, the performance of the proposed method is evaluated by simulation. It proves that the ZigZag antenna configuration with an optimal antenna height can significantly suppress the destructive interference, and ensure a throughput over 1Gbps comparing to the conventional antenna configuration at 60GHz band. Furthermore, the effectiveness of ZigZag antenna configuration is demonstrated on a single straight road by outdoor experiments.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2020EBP3170/_p
Copier
@ARTICLE{e104-b_10_1307,
author={Yue YIN, Haoze CHEN, Zongdian LI, Tao YU, Kei SAKAGUCHI, },
journal={IEICE TRANSACTIONS on Communications},
title={ZigZag Antenna Configuration for MmWave V2V with Relay in Typical Road Scenarios: Design, Analysis and Experiment},
year={2021},
volume={E104-B},
number={10},
pages={1307-1317},
abstract={Communication systems operating in the millimeter-wave (mmWave) band have the potential to realize ultra-high throughput and ultra-low latency vehicle-to-vehicle (V2V) communications in 5G and beyond wireless networks. Moreover, because of the weak penetration nature of mmWave, one mmWave channel can be reused in all V2V links, which improves the spectrum efficiency. Although the outstanding performance of the mmWave above has been widely acknowledged, there are still some shortcomings. One of the unavoidable defects is multipath interference. Even though the direct interference link cannot penetrate vehicle bodies, other interference degrades the throughput of the mmWave V2V communication. In this paper, we focus on the multipath interference caused by signal reflections from roads and surroundings, where the interference strength varies in road scenarios. Firstly, we analyze the multipath channel models of mmWave V2V with relay in three typical road scenarios (single straight roads, horizontal curves, and slopes). Their interference differences are clarified. Based on the analysis, a novel method of ZigZag antenna configuration is proposed to guarantee the required data rate. Secondly, the performance of the proposed method is evaluated by simulation. It proves that the ZigZag antenna configuration with an optimal antenna height can significantly suppress the destructive interference, and ensure a throughput over 1Gbps comparing to the conventional antenna configuration at 60GHz band. Furthermore, the effectiveness of ZigZag antenna configuration is demonstrated on a single straight road by outdoor experiments.},
keywords={},
doi={10.1587/transcom.2020EBP3170},
ISSN={1745-1345},
month={October},}
Copier
TY - JOUR
TI - ZigZag Antenna Configuration for MmWave V2V with Relay in Typical Road Scenarios: Design, Analysis and Experiment
T2 - IEICE TRANSACTIONS on Communications
SP - 1307
EP - 1317
AU - Yue YIN
AU - Haoze CHEN
AU - Zongdian LI
AU - Tao YU
AU - Kei SAKAGUCHI
PY - 2021
DO - 10.1587/transcom.2020EBP3170
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E104-B
IS - 10
JA - IEICE TRANSACTIONS on Communications
Y1 - October 2021
AB - Communication systems operating in the millimeter-wave (mmWave) band have the potential to realize ultra-high throughput and ultra-low latency vehicle-to-vehicle (V2V) communications in 5G and beyond wireless networks. Moreover, because of the weak penetration nature of mmWave, one mmWave channel can be reused in all V2V links, which improves the spectrum efficiency. Although the outstanding performance of the mmWave above has been widely acknowledged, there are still some shortcomings. One of the unavoidable defects is multipath interference. Even though the direct interference link cannot penetrate vehicle bodies, other interference degrades the throughput of the mmWave V2V communication. In this paper, we focus on the multipath interference caused by signal reflections from roads and surroundings, where the interference strength varies in road scenarios. Firstly, we analyze the multipath channel models of mmWave V2V with relay in three typical road scenarios (single straight roads, horizontal curves, and slopes). Their interference differences are clarified. Based on the analysis, a novel method of ZigZag antenna configuration is proposed to guarantee the required data rate. Secondly, the performance of the proposed method is evaluated by simulation. It proves that the ZigZag antenna configuration with an optimal antenna height can significantly suppress the destructive interference, and ensure a throughput over 1Gbps comparing to the conventional antenna configuration at 60GHz band. Furthermore, the effectiveness of ZigZag antenna configuration is demonstrated on a single straight road by outdoor experiments.
ER -