The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article propose un modèle d'optimisation sous des demandes de trafic incertaines pour concevoir le réseau de secours afin de minimiser la capacité totale d'un réseau de secours afin de protéger le réseau principal contre de multiples défaillances de liaison, où la probabilité de défaillance de liaison est spécifiée. L'incertitude du tuyau est adoptée pour exprimer des demandes de trafic incertaines. La garantie probabiliste de survie est fournie en déterminant simultanément le routage du réseau principal et du réseau de secours. Une optimisation robuste est introduite pour fournir des garanties probabilistes de survie pour différentes capacités de liaison dans le modèle de réseau principal sous l'incertitude du tuyau. L'optimisation robuste dans le modèle proposé gère deux éléments incertains : une liaison principale défaillante incertaine avec des capacités différentes et des demandes de trafic incertaines. Nous formulons un problème d'optimisation pour le modèle proposé. Comme il est difficile de le résoudre directement, nous introduisons une approche heuristique pour le modèle proposé. En utilisant l'approche heuristique, nous étudions comment la probabilité de défaillance d'une liaison affecte le routage du réseau principal et de secours. Les résultats numériques montrent que le modèle proposé produit un réseau de secours avec des exigences de capacité totale inférieures à celles du modèle conventionnel pour les probabilités de défaillance de liaison examinées dans cet article. Les résultats indiquent que le modèle proposé réduit la capacité totale du réseau de secours par rapport au modèle conventionnel sous l'incertitude du tuyau. Le modèle proposé partage plus efficacement les ressources de sauvegarde pour protéger les liaisons principales en déterminant le routage dans les réseaux primaires et de sauvegarde.
Soudalin KHOUANGVICHIT
The University of Electro-Communications
Eiji OKI
Kyoto University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Soudalin KHOUANGVICHIT, Eiji OKI, "Optimization Model for Backup Network Design with Primary and Backup Routing against Multiple Link Failures under Uncertain Traffic Demands" in IEICE TRANSACTIONS on Communications,
vol. E104-B, no. 4, pp. 378-390, April 2021, doi: 10.1587/transcom.2020EBP3084.
Abstract: This paper proposes an optimization model under uncertain traffic demands to design the backup network to minimize the total capacity of a backup network to protect the primary network from multiple link failures, where the probability of link failure is specified. The hose uncertainty is adopted to express uncertain traffic demands. The probabilistic survivability guarantee is provided by determining both primary and backup network routing, simultaneously. Robust optimization is introduced to provide probabilistic survivability guarantees for different link capacities in the primary network model under the hose uncertainty. Robust optimization in the proposed model handles two uncertain items: uncertain failed primary link with different capacities and uncertain traffic demands. We formulate an optimization problem for the proposed model. Since it is difficult to directly solve it, we introduce a heuristic approach for the proposed model. By using the heuristic approach, we investigate how the probability of link failure affects both primary and backup network routing. Numerical results show that the proposed model yields a backup network with lower total capacity requirements than the conventional model for the link failure probabilities examined in this paper. The results indicate that the proposed model reduces the total capacity of the backup network compared to the conventional model under the hose uncertainty. The proposed model shares more effectively the backup resources to protect primary links by determining routing in both primary and backup networks.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2020EBP3084/_p
Copier
@ARTICLE{e104-b_4_378,
author={Soudalin KHOUANGVICHIT, Eiji OKI, },
journal={IEICE TRANSACTIONS on Communications},
title={Optimization Model for Backup Network Design with Primary and Backup Routing against Multiple Link Failures under Uncertain Traffic Demands},
year={2021},
volume={E104-B},
number={4},
pages={378-390},
abstract={This paper proposes an optimization model under uncertain traffic demands to design the backup network to minimize the total capacity of a backup network to protect the primary network from multiple link failures, where the probability of link failure is specified. The hose uncertainty is adopted to express uncertain traffic demands. The probabilistic survivability guarantee is provided by determining both primary and backup network routing, simultaneously. Robust optimization is introduced to provide probabilistic survivability guarantees for different link capacities in the primary network model under the hose uncertainty. Robust optimization in the proposed model handles two uncertain items: uncertain failed primary link with different capacities and uncertain traffic demands. We formulate an optimization problem for the proposed model. Since it is difficult to directly solve it, we introduce a heuristic approach for the proposed model. By using the heuristic approach, we investigate how the probability of link failure affects both primary and backup network routing. Numerical results show that the proposed model yields a backup network with lower total capacity requirements than the conventional model for the link failure probabilities examined in this paper. The results indicate that the proposed model reduces the total capacity of the backup network compared to the conventional model under the hose uncertainty. The proposed model shares more effectively the backup resources to protect primary links by determining routing in both primary and backup networks.},
keywords={},
doi={10.1587/transcom.2020EBP3084},
ISSN={1745-1345},
month={April},}
Copier
TY - JOUR
TI - Optimization Model for Backup Network Design with Primary and Backup Routing against Multiple Link Failures under Uncertain Traffic Demands
T2 - IEICE TRANSACTIONS on Communications
SP - 378
EP - 390
AU - Soudalin KHOUANGVICHIT
AU - Eiji OKI
PY - 2021
DO - 10.1587/transcom.2020EBP3084
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E104-B
IS - 4
JA - IEICE TRANSACTIONS on Communications
Y1 - April 2021
AB - This paper proposes an optimization model under uncertain traffic demands to design the backup network to minimize the total capacity of a backup network to protect the primary network from multiple link failures, where the probability of link failure is specified. The hose uncertainty is adopted to express uncertain traffic demands. The probabilistic survivability guarantee is provided by determining both primary and backup network routing, simultaneously. Robust optimization is introduced to provide probabilistic survivability guarantees for different link capacities in the primary network model under the hose uncertainty. Robust optimization in the proposed model handles two uncertain items: uncertain failed primary link with different capacities and uncertain traffic demands. We formulate an optimization problem for the proposed model. Since it is difficult to directly solve it, we introduce a heuristic approach for the proposed model. By using the heuristic approach, we investigate how the probability of link failure affects both primary and backup network routing. Numerical results show that the proposed model yields a backup network with lower total capacity requirements than the conventional model for the link failure probabilities examined in this paper. The results indicate that the proposed model reduces the total capacity of the backup network compared to the conventional model under the hose uncertainty. The proposed model shares more effectively the backup resources to protect primary links by determining routing in both primary and backup networks.
ER -