The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Vues en texte intégral
101
Cet article résume nos études récentes sur l'architecture, l'intégration photonique, la validation du système et l'analyse des performances réseau d'un commutateur de réseau optique d'interconnexion flexible à faible latence (Flex-LIONS) pour les applications de centre de données et de calcul haute performance (HPC). Flex-LIONS exploite la propriété de routage de longueurs d'onde tout-à-tout dans les routeurs à réseaux de guides d'ondes en réseau (AWGR), combinée à un filtrage ajout/extraction basé sur un résonateur à micro-anneaux (MRR) et à une commutation spatiale multi-longueurs d'onde pour permettre la reconfigurabilité de la topologie et de la bande passante afin d'adapter l'interconnexion. à différents profils de trafic. En exploitant les multiples plages spectrales libres des AWGR, il est également possible de fournir une reconfiguration tout en conservant une interconnectivité tout-à-tout de diamètre minimum. Nous rapportons des résultats expérimentaux sur la conception, la fabrication et les tests de systèmes de puces Flex-LIONS photoniques sur silicium (SiPh) 8 × 8 démontrant une communication et une reconfiguration tout-à-tout sans erreur exploitant différentes plages spectrales libres (FSR0 et FRS1, respectivement). Après reconfiguration dans FSR1, la bande passante entre la paire de nœuds sélectionnée est augmentée de 50 Gb/s à 125 Gb/s tandis qu'une interconnectivité totale à 25 Gb/s est maintenue à l'aide de FSR.0. Enfin, nous étudions l'utilisation de Flex-LIONS dans deux scénarios de mise en réseau différents. Premièrement, les simulations de mise en réseau pour un scénario de communication inter-rack de centre de données à 256 nœuds montrent les avantages potentiels en matière de latence et d'énergie lors de l'utilisation de Flex-LIONS pour une reconfiguration optique basée sur différents profils de trafic (une architecture Fat Tree existante est utilisée à des fins de comparaison). Deuxièmement, nous démontrons les avantages de l’exploitation de deux FSR dans un système informatique à 8 nœuds et 64 cœurs pour permettre la reconfiguration des nœuds hotspot tout en conservant une interconnectivité tout-à-tout de diamètre minimum.
Roberto PROIETTI
University of California
Xian XIAO
University of California
Marjan FARIBORZ
University of California
Pouya FOTOUHI
University of California
Yu ZHANG
University of California
S. J. Ben YOO
University of California
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Roberto PROIETTI, Xian XIAO, Marjan FARIBORZ, Pouya FOTOUHI, Yu ZHANG, S. J. Ben YOO, "Flex-LIONS: A Silicon Photonic Bandwidth-Reconfigurable Optical Switch Fabric" in IEICE TRANSACTIONS on Communications,
vol. E103-B, no. 11, pp. 1190-1198, November 2020, doi: 10.1587/transcom.2019OBI0004.
Abstract: This paper summarizes our recent studies on architecture, photonic integration, system validation and networking performance analysis of a flexible low-latency interconnect optical network switch (Flex-LIONS) for datacenter and high-performance computing (HPC) applications. Flex-LIONS leverages the all-to-all wavelength routing property in arrayed waveguide grating routers (AWGRs) combined with microring resonator (MRR)-based add/drop filtering and multi-wavelength spatial switching to enable topology and bandwidth reconfigurability to adapt the interconnection to different traffic profiles. By exploiting the multiple free spectral ranges of AWGRs, it is also possible to provide reconfiguration while maintaining minimum-diameter all-to-all interconnectivity. We report experimental results on the design, fabrication, and system testing of 8×8 silicon photonic (SiPh) Flex-LIONS chips demonstrating error-free all-to-all communication and reconfiguration exploiting different free spectral ranges (FSR0 and FSR1, respectively). After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50Gb/s to 125Gb/s while an all interconnectivity at 25Gb/s is maintained using FSR0. Finally, we investigate the use of Flex-LIONS in two different networking scenarios. First, networking simulations for a 256-node datacenter inter-rack communication scenario show the potential latency and energy benefits when using Flex-LIONS for optical reconfiguration based on different traffic profiles (a legacy fat-tree architecture is used for comparison). Second, we demonstrate the benefits of leveraging two FSRs in an 8-node 64-core computing system to provide reconfiguration for the hotspot nodes while maintaining minimum-diameter all-to-all interconnectivity.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2019OBI0004/_p
Copier
@ARTICLE{e103-b_11_1190,
author={Roberto PROIETTI, Xian XIAO, Marjan FARIBORZ, Pouya FOTOUHI, Yu ZHANG, S. J. Ben YOO, },
journal={IEICE TRANSACTIONS on Communications},
title={Flex-LIONS: A Silicon Photonic Bandwidth-Reconfigurable Optical Switch Fabric},
year={2020},
volume={E103-B},
number={11},
pages={1190-1198},
abstract={This paper summarizes our recent studies on architecture, photonic integration, system validation and networking performance analysis of a flexible low-latency interconnect optical network switch (Flex-LIONS) for datacenter and high-performance computing (HPC) applications. Flex-LIONS leverages the all-to-all wavelength routing property in arrayed waveguide grating routers (AWGRs) combined with microring resonator (MRR)-based add/drop filtering and multi-wavelength spatial switching to enable topology and bandwidth reconfigurability to adapt the interconnection to different traffic profiles. By exploiting the multiple free spectral ranges of AWGRs, it is also possible to provide reconfiguration while maintaining minimum-diameter all-to-all interconnectivity. We report experimental results on the design, fabrication, and system testing of 8×8 silicon photonic (SiPh) Flex-LIONS chips demonstrating error-free all-to-all communication and reconfiguration exploiting different free spectral ranges (FSR0 and FSR1, respectively). After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50Gb/s to 125Gb/s while an all interconnectivity at 25Gb/s is maintained using FSR0. Finally, we investigate the use of Flex-LIONS in two different networking scenarios. First, networking simulations for a 256-node datacenter inter-rack communication scenario show the potential latency and energy benefits when using Flex-LIONS for optical reconfiguration based on different traffic profiles (a legacy fat-tree architecture is used for comparison). Second, we demonstrate the benefits of leveraging two FSRs in an 8-node 64-core computing system to provide reconfiguration for the hotspot nodes while maintaining minimum-diameter all-to-all interconnectivity.},
keywords={},
doi={10.1587/transcom.2019OBI0004},
ISSN={1745-1345},
month={November},}
Copier
TY - JOUR
TI - Flex-LIONS: A Silicon Photonic Bandwidth-Reconfigurable Optical Switch Fabric
T2 - IEICE TRANSACTIONS on Communications
SP - 1190
EP - 1198
AU - Roberto PROIETTI
AU - Xian XIAO
AU - Marjan FARIBORZ
AU - Pouya FOTOUHI
AU - Yu ZHANG
AU - S. J. Ben YOO
PY - 2020
DO - 10.1587/transcom.2019OBI0004
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E103-B
IS - 11
JA - IEICE TRANSACTIONS on Communications
Y1 - November 2020
AB - This paper summarizes our recent studies on architecture, photonic integration, system validation and networking performance analysis of a flexible low-latency interconnect optical network switch (Flex-LIONS) for datacenter and high-performance computing (HPC) applications. Flex-LIONS leverages the all-to-all wavelength routing property in arrayed waveguide grating routers (AWGRs) combined with microring resonator (MRR)-based add/drop filtering and multi-wavelength spatial switching to enable topology and bandwidth reconfigurability to adapt the interconnection to different traffic profiles. By exploiting the multiple free spectral ranges of AWGRs, it is also possible to provide reconfiguration while maintaining minimum-diameter all-to-all interconnectivity. We report experimental results on the design, fabrication, and system testing of 8×8 silicon photonic (SiPh) Flex-LIONS chips demonstrating error-free all-to-all communication and reconfiguration exploiting different free spectral ranges (FSR0 and FSR1, respectively). After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50Gb/s to 125Gb/s while an all interconnectivity at 25Gb/s is maintained using FSR0. Finally, we investigate the use of Flex-LIONS in two different networking scenarios. First, networking simulations for a 256-node datacenter inter-rack communication scenario show the potential latency and energy benefits when using Flex-LIONS for optical reconfiguration based on different traffic profiles (a legacy fat-tree architecture is used for comparison). Second, we demonstrate the benefits of leveraging two FSRs in an 8-node 64-core computing system to provide reconfiguration for the hotspot nodes while maintaining minimum-diameter all-to-all interconnectivity.
ER -