The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article évalue une variété de technologies 5G clés telles que les antennes massives à entrées multiples et sorties multiples (MIMO) des stations de base (BS), la formation et le suivi de faisceaux, le transfert (HO) d'unité intra-bande de base (BBU) et la couverture. Cela se fait dans différentes zones 5G intéressantes avec une variété de conditions radio telles qu'un hall d'entrée intérieur d'un immeuble de bureaux, une aire de stationnement extérieure et un déploiement urbain réaliste d'un système d'accès radio 5G avec des BS installés dans les bâtiments pour déployer une zone d'essai 5G dans le secteur riverain de Tokyo Odaiba. Les résultats expérimentaux montrent qu'un débit supérieur à 10 Gbit/s est obtenu dans une bande passante de 730 MHz à l'aide de 8 porteuses de composants, et qu'un gain de débit MIMO distribué est obtenu dans divers déploiements de points de transmission dans le hall intérieur d'un immeuble de bureaux et dans une zone de stationnement extérieure à l'aide de deux unités radio (RU). En particulier, dans la zone de stationnement extérieur, un avantage distinct du MIMO distribué est attendu et un gain de débit du MIMO distribué de 60 % est obtenu. Les résultats expérimentaux clarifient également les performances de la liaison descendante dans un déploiement urbain. Les résultats expérimentaux montrent qu'un débit supérieur à 1.5 Gbit/s est atteint dans la zone et qu'environ 200 Mbit/s sont atteints à 500 m de la BS. Nous confirmons également que le suivi du faisceau et l'intra-BBU HO fonctionnent bien, compensant la perte de trajet élevée à 28 GHz et atteignant une couverture de 500 m de la BS. D'un autre côté, les conditions de visibilité directe (LoS) et d'absence de visibilité directe (N-LoS) sont critiques pour les performances de la 5G dans la bande des 28 GHz, et nous observons que les connexions 5G sont parfois abandonnées derrière des arbres, des bâtiments, et sous les passerelles.
Daisuke KURITA
NTT DOCOMO, INC.
Kiichi TATEISHI
NTT DOCOMO, INC.
Daisuke KITAYAMA
NTT DOCOMO, INC.
Atsushi HARADA
NTT DOCOMO, INC.
Yoshihisa KISHIYAMA
NTT DOCOMO, INC.
Hideshi MURAI
Ericsson Japan
Shoji ITOH
Ericsson Japan
Arne SIMONSSON
Ericsson Research
Peter ÖKVIST
Ericsson Research
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Daisuke KURITA, Kiichi TATEISHI, Daisuke KITAYAMA, Atsushi HARADA, Yoshihisa KISHIYAMA, Hideshi MURAI, Shoji ITOH, Arne SIMONSSON, Peter ÖKVIST, "Indoor and Field Experiments on 5G Radio Access for 28-GHz Band Using Distributed MIMO and Beamforming" in IEICE TRANSACTIONS on Communications,
vol. E102-B, no. 8, pp. 1427-1436, August 2019, doi: 10.1587/transcom.2018TTP0008.
Abstract: This paper evaluates a variety of key 5G technologies such as base station (BS) massive multiple-input multiple-output (MIMO) antennas, beamforming and tracking, intra-baseband unit (BBU) hand over (HO), and coverage. This is done in different interesting 5G areas with a variety of radio conditions such as an indoor office building lobby, an outdoor parking area, and a realistic urban deployment of a 5G radio access system with BSs installed in buildings to deploy a 5G trial area in the Tokyo Odaiba waterfront area. Experimental results show that throughput exceeding 10Gbps is achieved in a 730MHz bandwidth using 8 component carriers, and distributed MIMO throughput gain is achieved in various transmission point deployments in the indoor office building lobby and outdoor parking area using two radio units (RUs). In particular, in the outdoor parking area, a distinct advantage from distributed MIMO is expected and the distributed MIMO gain in throughput of 60% is achieved. The experimental results also clarify the downlink performance in an urban deployment. The experimental results show that throughput exceeding 1.5Gbps is achieved in the area and approximately 200 Mbps is achieved at 500m away from the BS. We also confirm that the beam tracking and intra-BBU HO work well compensating for high path loss at 28-GHz, and achieve coverage 500m from the BS. On the other hand, line of sight (LoS) and non-line-of sight (N-LoS) conditions are critical to 5G performance in the 28-GHz band, and we observe that 5G connections are sometimes dropped behind trees, buildings, and under footbridges.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2018TTP0008/_p
Copier
@ARTICLE{e102-b_8_1427,
author={Daisuke KURITA, Kiichi TATEISHI, Daisuke KITAYAMA, Atsushi HARADA, Yoshihisa KISHIYAMA, Hideshi MURAI, Shoji ITOH, Arne SIMONSSON, Peter ÖKVIST, },
journal={IEICE TRANSACTIONS on Communications},
title={Indoor and Field Experiments on 5G Radio Access for 28-GHz Band Using Distributed MIMO and Beamforming},
year={2019},
volume={E102-B},
number={8},
pages={1427-1436},
abstract={This paper evaluates a variety of key 5G technologies such as base station (BS) massive multiple-input multiple-output (MIMO) antennas, beamforming and tracking, intra-baseband unit (BBU) hand over (HO), and coverage. This is done in different interesting 5G areas with a variety of radio conditions such as an indoor office building lobby, an outdoor parking area, and a realistic urban deployment of a 5G radio access system with BSs installed in buildings to deploy a 5G trial area in the Tokyo Odaiba waterfront area. Experimental results show that throughput exceeding 10Gbps is achieved in a 730MHz bandwidth using 8 component carriers, and distributed MIMO throughput gain is achieved in various transmission point deployments in the indoor office building lobby and outdoor parking area using two radio units (RUs). In particular, in the outdoor parking area, a distinct advantage from distributed MIMO is expected and the distributed MIMO gain in throughput of 60% is achieved. The experimental results also clarify the downlink performance in an urban deployment. The experimental results show that throughput exceeding 1.5Gbps is achieved in the area and approximately 200 Mbps is achieved at 500m away from the BS. We also confirm that the beam tracking and intra-BBU HO work well compensating for high path loss at 28-GHz, and achieve coverage 500m from the BS. On the other hand, line of sight (LoS) and non-line-of sight (N-LoS) conditions are critical to 5G performance in the 28-GHz band, and we observe that 5G connections are sometimes dropped behind trees, buildings, and under footbridges.},
keywords={},
doi={10.1587/transcom.2018TTP0008},
ISSN={1745-1345},
month={August},}
Copier
TY - JOUR
TI - Indoor and Field Experiments on 5G Radio Access for 28-GHz Band Using Distributed MIMO and Beamforming
T2 - IEICE TRANSACTIONS on Communications
SP - 1427
EP - 1436
AU - Daisuke KURITA
AU - Kiichi TATEISHI
AU - Daisuke KITAYAMA
AU - Atsushi HARADA
AU - Yoshihisa KISHIYAMA
AU - Hideshi MURAI
AU - Shoji ITOH
AU - Arne SIMONSSON
AU - Peter ÖKVIST
PY - 2019
DO - 10.1587/transcom.2018TTP0008
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E102-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2019
AB - This paper evaluates a variety of key 5G technologies such as base station (BS) massive multiple-input multiple-output (MIMO) antennas, beamforming and tracking, intra-baseband unit (BBU) hand over (HO), and coverage. This is done in different interesting 5G areas with a variety of radio conditions such as an indoor office building lobby, an outdoor parking area, and a realistic urban deployment of a 5G radio access system with BSs installed in buildings to deploy a 5G trial area in the Tokyo Odaiba waterfront area. Experimental results show that throughput exceeding 10Gbps is achieved in a 730MHz bandwidth using 8 component carriers, and distributed MIMO throughput gain is achieved in various transmission point deployments in the indoor office building lobby and outdoor parking area using two radio units (RUs). In particular, in the outdoor parking area, a distinct advantage from distributed MIMO is expected and the distributed MIMO gain in throughput of 60% is achieved. The experimental results also clarify the downlink performance in an urban deployment. The experimental results show that throughput exceeding 1.5Gbps is achieved in the area and approximately 200 Mbps is achieved at 500m away from the BS. We also confirm that the beam tracking and intra-BBU HO work well compensating for high path loss at 28-GHz, and achieve coverage 500m from the BS. On the other hand, line of sight (LoS) and non-line-of sight (N-LoS) conditions are critical to 5G performance in the 28-GHz band, and we observe that 5G connections are sometimes dropped behind trees, buildings, and under footbridges.
ER -