The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
L'accès amélioré aux canaux distribués (EDCA) IEEE 802.11p est une normalisation pour les communications de véhicule à véhicule et de route à véhicule. Les débits saturés de l'EDCA IEEE 802.11p obtenus à partir des expressions analytiques précédentes diffèrent de ceux des simulations. Le but de cet article est d'expliquer la raison pour laquelle les différences apparaissent dans le modèle analytique précédent de l'EDCA. Il est précisé qu'il existe un état spécial dans lequel le temporisateur d'attente (BT) est décrémenté dans le premier intervalle de temps après une transmission de trame, qui ne peut pas être exprimé dans le modèle de Markov précédent. De plus, cet article propose des modèles de Markov modifiés, qui permettent d'analyser correctement l'EDCA IEEE 802.11p. Les modèles proposés décrivent avec précision la procédure de décrémentation BT dans le premier intervalle de temps en ajoutant de nouveaux états au modèle précédent. En conséquence, les modèles proposés fournissent des probabilités de transmission précises des nœuds du réseau. La validité des modèles proposés est confirmée par les accords quantitatifs entre les prévisions analytiques et les résultats de simulation.
Shintaro IKUMA
Chiba University
Zhetao LI
Xiangtan University
Tingrui PEI
Xiangtan University
Young-June CHOI
Ajou University
Hiroo SEKIYA
Chiba University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Shintaro IKUMA, Zhetao LI, Tingrui PEI, Young-June CHOI, Hiroo SEKIYA, "Rigorous Analytical Model of Saturated Throughput for the IEEE 802.11p EDCA" in IEICE TRANSACTIONS on Communications,
vol. E102-B, no. 4, pp. 699-707, April 2019, doi: 10.1587/transcom.2018SEP0005.
Abstract: The IEEE 802.11p Enhanced Distributed Channel Access (EDCA) is a standardization for vehicle-to-vehicle and road-to-vehicle communications. The saturated throughputs of the IEEE 802.11p EDCA obtained from previous analytical expressions differ from those of simulations. The purpose of this paper is to explain the reason why the differences appear in the previous analytical model of the EDCA. It is clarified that there is a special state wherein the Backoff Timer (BT) is decremented in the first time slot of after a frame transmission, which cannot be expressed in the previous Markov model. In addition, this paper proposes modified Markov models, which allow the IEEE 802.11p EDCA to be correctly analyzed. The proposed models describe BT-decrement procedure in the first time slot accurately by adding new states to the previous model. As a result, the proposed models provide accurate transmission probabilities of network nodes. The validity of the proposed models is confirmed by the quantitative agreements between analytical predictions and simulation results.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2018SEP0005/_p
Copier
@ARTICLE{e102-b_4_699,
author={Shintaro IKUMA, Zhetao LI, Tingrui PEI, Young-June CHOI, Hiroo SEKIYA, },
journal={IEICE TRANSACTIONS on Communications},
title={Rigorous Analytical Model of Saturated Throughput for the IEEE 802.11p EDCA},
year={2019},
volume={E102-B},
number={4},
pages={699-707},
abstract={The IEEE 802.11p Enhanced Distributed Channel Access (EDCA) is a standardization for vehicle-to-vehicle and road-to-vehicle communications. The saturated throughputs of the IEEE 802.11p EDCA obtained from previous analytical expressions differ from those of simulations. The purpose of this paper is to explain the reason why the differences appear in the previous analytical model of the EDCA. It is clarified that there is a special state wherein the Backoff Timer (BT) is decremented in the first time slot of after a frame transmission, which cannot be expressed in the previous Markov model. In addition, this paper proposes modified Markov models, which allow the IEEE 802.11p EDCA to be correctly analyzed. The proposed models describe BT-decrement procedure in the first time slot accurately by adding new states to the previous model. As a result, the proposed models provide accurate transmission probabilities of network nodes. The validity of the proposed models is confirmed by the quantitative agreements between analytical predictions and simulation results.},
keywords={},
doi={10.1587/transcom.2018SEP0005},
ISSN={1745-1345},
month={April},}
Copier
TY - JOUR
TI - Rigorous Analytical Model of Saturated Throughput for the IEEE 802.11p EDCA
T2 - IEICE TRANSACTIONS on Communications
SP - 699
EP - 707
AU - Shintaro IKUMA
AU - Zhetao LI
AU - Tingrui PEI
AU - Young-June CHOI
AU - Hiroo SEKIYA
PY - 2019
DO - 10.1587/transcom.2018SEP0005
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E102-B
IS - 4
JA - IEICE TRANSACTIONS on Communications
Y1 - April 2019
AB - The IEEE 802.11p Enhanced Distributed Channel Access (EDCA) is a standardization for vehicle-to-vehicle and road-to-vehicle communications. The saturated throughputs of the IEEE 802.11p EDCA obtained from previous analytical expressions differ from those of simulations. The purpose of this paper is to explain the reason why the differences appear in the previous analytical model of the EDCA. It is clarified that there is a special state wherein the Backoff Timer (BT) is decremented in the first time slot of after a frame transmission, which cannot be expressed in the previous Markov model. In addition, this paper proposes modified Markov models, which allow the IEEE 802.11p EDCA to be correctly analyzed. The proposed models describe BT-decrement procedure in the first time slot accurately by adding new states to the previous model. As a result, the proposed models provide accurate transmission probabilities of network nodes. The validity of the proposed models is confirmed by the quantitative agreements between analytical predictions and simulation results.
ER -