The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Vues en texte intégral
123
La technologie de réseautage défini par logiciel (SDN) nous permet de configurer de manière flexible les commutateurs d'un réseau. Auparavant, les méthodes de contrôle SDN distribuées ont été discutées pour améliorer leur évolutivité et leur robustesse. Le placement distribué des contrôleurs et la sauvegarde mutuelle améliorent la robustesse. Cependant, ces techniques n'incluent pas de mesure d'urgence contre les pannes à grande échelle telles que la séparation des réseaux induite par des catastrophes. Dans cette étude, nous proposons d'abord une méthode de partitionnement du réseau pour créer un plan de contrôle robuste (C-Plane) contre les pannes à grande échelle. Dans notre approche, les réseaux sont divisés en plusieurs sous-réseaux sur la base d'un coefficient de topologie robuste (RTC). RTC désigne la probabilité que les nœuds d'un sous-réseau s'isolent des contrôleurs lorsqu'une panne à grande échelle se produit. En plaçant un contrôleur local sur chaque sous-réseau, 6 à 10 % des connexions contrôleur-commutateur plus importantes seront conservées après une panne par rapport à d'autres approches. De plus, nous discutons de la reconstruction d’urgence réactive d’un plan C SDN distribué. Chaque nœud détecte une déconnexion de son contrôleur. Ensuite, le plan C sera reconstruit par des commutateurs isolés et géré par l'autre contrôleur de remplacement. Pendant ce temps, notre approche reconstruit le plan C lorsque la connectivité réseau est rétablie. Les contrôleurs principal et de remplacement détectent la restauration du réseau et fusionnent leurs plans C sans conflit. Les résultats de la simulation révèlent que notre méthode proposée récupère la connectivité logique du plan C avec une probabilité d'environ 90 % lorsqu'une défaillance se produit dans des réseaux à 100 nœuds. De plus, nous démontrons que le temps de convergence de notre mécanisme de reconstruction est proportionnel à la taille du réseau.
Takahiro HIRAYAMA
National Institute of Information and Communications Technology (NICT)
Masahiro JIBIKI
National Institute of Information and Communications Technology (NICT)
Hiroaki HARAI
National Institute of Information and Communications Technology (NICT)
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Takahiro HIRAYAMA, Masahiro JIBIKI, Hiroaki HARAI, "Designing Distributed SDN C-Plane Considering Large-Scale Disruption and Restoration" in IEICE TRANSACTIONS on Communications,
vol. E102-B, no. 3, pp. 452-463, March 2019, doi: 10.1587/transcom.2018NVP0005.
Abstract: Software-defined networking (SDN) technology enables us to flexibly configure switches in a network. Previously, distributed SDN control methods have been discussed to improve their scalability and robustness. Distributed placement of controllers and backing up each other enhance robustness. However, these techniques do not include an emergency measure against large-scale failures such as network separation induced by disasters. In this study, we first propose a network partitioning method to create a robust control plane (C-Plane) against large-scale failures. In our approach, networks are partitioned into multiple sub-networks based on robust topology coefficient (RTC). RTC denotes the probability that nodes in a sub-network isolate from controllers when a large-scale failure occurs. By placing a local controller onto each sub-network, 6%-10% of larger controller-switch connections will be retained after failure as compared to other approaches. Furthermore, we discuss reactive emergency reconstruction of a distributed SDN C-plane. Each node detects a disconnection to its controller. Then, C-plane will be reconstructed by isolated switches and managed by the other substitute controller. Meanwhile, our approach reconstructs C-plane when network connectivity recovers. The main and substitute controllers detect network restoration and merge their C-planes without conflict. Simulation results reveal that our proposed method recovers C-plane logical connectivity with a probability of approximately 90% when failure occurs in 100 node networks. Furthermore, we demonstrate that the convergence time of our reconstruction mechanism is proportional to the network size.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2018NVP0005/_p
Copier
@ARTICLE{e102-b_3_452,
author={Takahiro HIRAYAMA, Masahiro JIBIKI, Hiroaki HARAI, },
journal={IEICE TRANSACTIONS on Communications},
title={Designing Distributed SDN C-Plane Considering Large-Scale Disruption and Restoration},
year={2019},
volume={E102-B},
number={3},
pages={452-463},
abstract={Software-defined networking (SDN) technology enables us to flexibly configure switches in a network. Previously, distributed SDN control methods have been discussed to improve their scalability and robustness. Distributed placement of controllers and backing up each other enhance robustness. However, these techniques do not include an emergency measure against large-scale failures such as network separation induced by disasters. In this study, we first propose a network partitioning method to create a robust control plane (C-Plane) against large-scale failures. In our approach, networks are partitioned into multiple sub-networks based on robust topology coefficient (RTC). RTC denotes the probability that nodes in a sub-network isolate from controllers when a large-scale failure occurs. By placing a local controller onto each sub-network, 6%-10% of larger controller-switch connections will be retained after failure as compared to other approaches. Furthermore, we discuss reactive emergency reconstruction of a distributed SDN C-plane. Each node detects a disconnection to its controller. Then, C-plane will be reconstructed by isolated switches and managed by the other substitute controller. Meanwhile, our approach reconstructs C-plane when network connectivity recovers. The main and substitute controllers detect network restoration and merge their C-planes without conflict. Simulation results reveal that our proposed method recovers C-plane logical connectivity with a probability of approximately 90% when failure occurs in 100 node networks. Furthermore, we demonstrate that the convergence time of our reconstruction mechanism is proportional to the network size.},
keywords={},
doi={10.1587/transcom.2018NVP0005},
ISSN={1745-1345},
month={March},}
Copier
TY - JOUR
TI - Designing Distributed SDN C-Plane Considering Large-Scale Disruption and Restoration
T2 - IEICE TRANSACTIONS on Communications
SP - 452
EP - 463
AU - Takahiro HIRAYAMA
AU - Masahiro JIBIKI
AU - Hiroaki HARAI
PY - 2019
DO - 10.1587/transcom.2018NVP0005
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E102-B
IS - 3
JA - IEICE TRANSACTIONS on Communications
Y1 - March 2019
AB - Software-defined networking (SDN) technology enables us to flexibly configure switches in a network. Previously, distributed SDN control methods have been discussed to improve their scalability and robustness. Distributed placement of controllers and backing up each other enhance robustness. However, these techniques do not include an emergency measure against large-scale failures such as network separation induced by disasters. In this study, we first propose a network partitioning method to create a robust control plane (C-Plane) against large-scale failures. In our approach, networks are partitioned into multiple sub-networks based on robust topology coefficient (RTC). RTC denotes the probability that nodes in a sub-network isolate from controllers when a large-scale failure occurs. By placing a local controller onto each sub-network, 6%-10% of larger controller-switch connections will be retained after failure as compared to other approaches. Furthermore, we discuss reactive emergency reconstruction of a distributed SDN C-plane. Each node detects a disconnection to its controller. Then, C-plane will be reconstructed by isolated switches and managed by the other substitute controller. Meanwhile, our approach reconstructs C-plane when network connectivity recovers. The main and substitute controllers detect network restoration and merge their C-planes without conflict. Simulation results reveal that our proposed method recovers C-plane logical connectivity with a probability of approximately 90% when failure occurs in 100 node networks. Furthermore, we demonstrate that the convergence time of our reconstruction mechanism is proportional to the network size.
ER -