The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cette étude, en supposant qu'un robot (1) dispose d'une caméra de lacet contrôlable à distance et (2) se déplace selon un mouvement linéaire uniforme, nous proposons et étudions comment améliorer le taux de reconnaissance de cible avec la caméra, en utilisant une boucle de rétroaction sans fil. contrôle. Nous dérivons théoriquement le débit de données autorisé et, du point de vue du contrôle des erreurs et des délais, nous proposons et évaluons des schémas ARQ QoS-Hybrid sous des contraintes de débit de données. Plus précisément, les analyses théoriques dérivent le débit de données maximal pour la détection et le contrôle en fonction de la capacité du canal dérivé du théorème de Shannon-Hartley et du modèle de canal à perte de trajet à l'intérieur du corps humain, c'est-à-dire CM2 dans la norme IEEE 802.15.6. Ensuite, les schémas adaptatifs de contrôle d'erreur et de retard, c'est-à-dire QoS-HARQ, sont proposés en considérant les deux contraintes : le débit de données maximum et la vitesse de mouvement de la caméra. Pour les évaluations de performances, avec le simulateur de robot 3D GAZEBO, nous avons évalué nos schémas proposés dans les deux scénarios : l'environnement statique et l'environnement dynamique. Les résultats donnent un aperçu de la manière d’améliorer considérablement le taux de reconnaissance dans chaque situation.
Satoshi SEIMIYA
the Yokohama National University
Takumi KOBAYASHI
the Yokohama National University
Ryuji KOHNO
the Yokohama National University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Satoshi SEIMIYA, Takumi KOBAYASHI, Ryuji KOHNO, "Dependable Wireless Feedback Loop Control Schemes Considering Errors and Delay in Sensing Data and Control Command Packets" in IEICE TRANSACTIONS on Communications,
vol. E102-B, no. 6, pp. 1113-1120, June 2019, doi: 10.1587/transcom.2018HMP0008.
Abstract: In this study, under the assumption that a robot (1) has a remotely controllable yawing camera and (2) moves in a uniform linear motion, we propose and investigate how to improve the target recognition rate with the camera, by using wireless feedback loop control. We derive the allowable data rate theoretically, and, from the viewpoint of error and delay control, we propose and evaluate QoS-Hybrid ARQ schemes under data rate constraints. Specifically, the theoretical analyses derive the maximum data rate for sensing and control based on the channel capacity is derived with the Shannon-Hartley theorem and the path-loss channel model inside the human body, i.e. CM2 in IEEE 802.15.6 standard. Then, the adaptive error and delay control schemes, i.e. QoS-HARQ, are proposed considering the two constraints: the maximum data rate and the velocity of the camera's movement. For the performance evaluations, with the 3D robot simulator GAZEBO, we evaluated our proposed schemes in the two scenarios: the static environment and the dynamic environment. The results yield insights into how to improve the recognition rate considerably in each situation.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2018HMP0008/_p
Copier
@ARTICLE{e102-b_6_1113,
author={Satoshi SEIMIYA, Takumi KOBAYASHI, Ryuji KOHNO, },
journal={IEICE TRANSACTIONS on Communications},
title={Dependable Wireless Feedback Loop Control Schemes Considering Errors and Delay in Sensing Data and Control Command Packets},
year={2019},
volume={E102-B},
number={6},
pages={1113-1120},
abstract={In this study, under the assumption that a robot (1) has a remotely controllable yawing camera and (2) moves in a uniform linear motion, we propose and investigate how to improve the target recognition rate with the camera, by using wireless feedback loop control. We derive the allowable data rate theoretically, and, from the viewpoint of error and delay control, we propose and evaluate QoS-Hybrid ARQ schemes under data rate constraints. Specifically, the theoretical analyses derive the maximum data rate for sensing and control based on the channel capacity is derived with the Shannon-Hartley theorem and the path-loss channel model inside the human body, i.e. CM2 in IEEE 802.15.6 standard. Then, the adaptive error and delay control schemes, i.e. QoS-HARQ, are proposed considering the two constraints: the maximum data rate and the velocity of the camera's movement. For the performance evaluations, with the 3D robot simulator GAZEBO, we evaluated our proposed schemes in the two scenarios: the static environment and the dynamic environment. The results yield insights into how to improve the recognition rate considerably in each situation.},
keywords={},
doi={10.1587/transcom.2018HMP0008},
ISSN={1745-1345},
month={June},}
Copier
TY - JOUR
TI - Dependable Wireless Feedback Loop Control Schemes Considering Errors and Delay in Sensing Data and Control Command Packets
T2 - IEICE TRANSACTIONS on Communications
SP - 1113
EP - 1120
AU - Satoshi SEIMIYA
AU - Takumi KOBAYASHI
AU - Ryuji KOHNO
PY - 2019
DO - 10.1587/transcom.2018HMP0008
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E102-B
IS - 6
JA - IEICE TRANSACTIONS on Communications
Y1 - June 2019
AB - In this study, under the assumption that a robot (1) has a remotely controllable yawing camera and (2) moves in a uniform linear motion, we propose and investigate how to improve the target recognition rate with the camera, by using wireless feedback loop control. We derive the allowable data rate theoretically, and, from the viewpoint of error and delay control, we propose and evaluate QoS-Hybrid ARQ schemes under data rate constraints. Specifically, the theoretical analyses derive the maximum data rate for sensing and control based on the channel capacity is derived with the Shannon-Hartley theorem and the path-loss channel model inside the human body, i.e. CM2 in IEEE 802.15.6 standard. Then, the adaptive error and delay control schemes, i.e. QoS-HARQ, are proposed considering the two constraints: the maximum data rate and the velocity of the camera's movement. For the performance evaluations, with the 3D robot simulator GAZEBO, we evaluated our proposed schemes in the two scenarios: the static environment and the dynamic environment. The results yield insights into how to improve the recognition rate considerably in each situation.
ER -