The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Les réseaux de communication par courant porteur en ligne (PLC) jouent un rôle important dans les réseaux domestiques et dans les réseaux hybrides de nouvelle génération, qui offrent des débits de données plus élevés (Gbit/s) et une connectivité plus facile. Le protocole standard de contrôle d'accès au support (MAC) des réseaux CPL, IEEE 1901, utilise un mécanisme spécial d'accès multiple avec détection de porteuse avec évitement de collision (CSMA/CA), dans lequel la technologie de compteur différé est introduite pour éviter les collisions inutiles. Bien que les réseaux CPL aient connu un grand succès commercial, l'analyse de la couche MAC pour les réseaux CPL IEEE 1901 a reçu une attention limitée. Jusqu'à présent, quelques études utilisaient la théorie du renouvellement et la loi forte des grands nombres (SLLN) pour analyser les performances MAC du protocole IEEE 1901. Ces études se concentrent sur les conditions de saturation et négligent les impacts de la taille des zones tampons et du taux de trafic. De plus, ils ne sont valables que pour un trafic homogène. Motivés par ces limitations, nous développons un modèle analytique unifié et évolutif pour le protocole IEEE 1901 dans des conditions non saturées, qui prend en compte de manière exhaustive les impacts du débit de trafic, de la taille du tampon et des types de trafic (trafic homogène ou hétérogène). Dans le processus de modélisation, un modèle de chaîne de Markov discrète multicouche est construit pour décrire le principe de fonctionnement de base du protocole IEEE 1901. Le processus de mise en file d'attente du tampon de station est capturé à l'aide de la théorie des files d'attente. De plus, nous présentons une analyse détaillée du protocole IEEE 1901 dans des conditions de trafic hétérogènes. Enfin, nous effectuons des simulations approfondies pour vérifier le modèle analytique et évaluer les performances MAC du protocole IEEE 1901 dans les réseaux CPL.
Sheng HAO
Wuhan University
Huyin ZHANG
Wuhan University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Sheng HAO, Huyin ZHANG, "From Homogeneous to Heterogeneous: An Analytical Model for IEEE 1901 Power Line Communication Networks in Unsaturated Conditions" in IEICE TRANSACTIONS on Communications,
vol. E102-B, no. 8, pp. 1636-1648, August 2019, doi: 10.1587/transcom.2018EBP3302.
Abstract: Power line communication (PLC) networks play an important role in home networks and in next generation hybrid networks, which provide higher data rates (Gbps) and easier connectivity. The standard medium access control (MAC) protocol of PLC networks, IEEE 1901, uses a special carrier sense multiple access with collision avoidance (CSMA/CA) mechanism, in which the deferral counter technology is introduced to avoid unnecessary collisions. Although PLC networks have achieved great commercial success, MAC layer analysis for IEEE 1901 PLC networks received limited attention. Until now, a few studies used renewal theory and strong law of large number (SLLN) to analyze the MAC performance of IEEE 1901 protocol. These studies focus on saturated conditions and neglect the impacts of buffer size and traffic rate. Additionally, they are valid only for homogeneous traffic. Motivated by these limitations, we develop a unified and scalable analytical model for IEEE 1901 protocol in unsaturated conditions, which comprehensively considers the impacts of traffic rate, buffer size, and traffic types (homogeneous or heterogeneous traffic). In the modeling process, a multi-layer discrete Markov chain model is constructed to depict the basic working principle of IEEE 1901 protocol. The queueing process of the station buffer is captured by using Queueing theory. Furthermore, we present a detailed analysis for IEEE 1901 protocol under heterogeneous traffic conditions. Finally, we conduct extensive simulations to verify the analytical model and evaluate the MAC performance of IEEE 1901 protocol in PLC networks.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2018EBP3302/_p
Copier
@ARTICLE{e102-b_8_1636,
author={Sheng HAO, Huyin ZHANG, },
journal={IEICE TRANSACTIONS on Communications},
title={From Homogeneous to Heterogeneous: An Analytical Model for IEEE 1901 Power Line Communication Networks in Unsaturated Conditions},
year={2019},
volume={E102-B},
number={8},
pages={1636-1648},
abstract={Power line communication (PLC) networks play an important role in home networks and in next generation hybrid networks, which provide higher data rates (Gbps) and easier connectivity. The standard medium access control (MAC) protocol of PLC networks, IEEE 1901, uses a special carrier sense multiple access with collision avoidance (CSMA/CA) mechanism, in which the deferral counter technology is introduced to avoid unnecessary collisions. Although PLC networks have achieved great commercial success, MAC layer analysis for IEEE 1901 PLC networks received limited attention. Until now, a few studies used renewal theory and strong law of large number (SLLN) to analyze the MAC performance of IEEE 1901 protocol. These studies focus on saturated conditions and neglect the impacts of buffer size and traffic rate. Additionally, they are valid only for homogeneous traffic. Motivated by these limitations, we develop a unified and scalable analytical model for IEEE 1901 protocol in unsaturated conditions, which comprehensively considers the impacts of traffic rate, buffer size, and traffic types (homogeneous or heterogeneous traffic). In the modeling process, a multi-layer discrete Markov chain model is constructed to depict the basic working principle of IEEE 1901 protocol. The queueing process of the station buffer is captured by using Queueing theory. Furthermore, we present a detailed analysis for IEEE 1901 protocol under heterogeneous traffic conditions. Finally, we conduct extensive simulations to verify the analytical model and evaluate the MAC performance of IEEE 1901 protocol in PLC networks.},
keywords={},
doi={10.1587/transcom.2018EBP3302},
ISSN={1745-1345},
month={August},}
Copier
TY - JOUR
TI - From Homogeneous to Heterogeneous: An Analytical Model for IEEE 1901 Power Line Communication Networks in Unsaturated Conditions
T2 - IEICE TRANSACTIONS on Communications
SP - 1636
EP - 1648
AU - Sheng HAO
AU - Huyin ZHANG
PY - 2019
DO - 10.1587/transcom.2018EBP3302
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E102-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2019
AB - Power line communication (PLC) networks play an important role in home networks and in next generation hybrid networks, which provide higher data rates (Gbps) and easier connectivity. The standard medium access control (MAC) protocol of PLC networks, IEEE 1901, uses a special carrier sense multiple access with collision avoidance (CSMA/CA) mechanism, in which the deferral counter technology is introduced to avoid unnecessary collisions. Although PLC networks have achieved great commercial success, MAC layer analysis for IEEE 1901 PLC networks received limited attention. Until now, a few studies used renewal theory and strong law of large number (SLLN) to analyze the MAC performance of IEEE 1901 protocol. These studies focus on saturated conditions and neglect the impacts of buffer size and traffic rate. Additionally, they are valid only for homogeneous traffic. Motivated by these limitations, we develop a unified and scalable analytical model for IEEE 1901 protocol in unsaturated conditions, which comprehensively considers the impacts of traffic rate, buffer size, and traffic types (homogeneous or heterogeneous traffic). In the modeling process, a multi-layer discrete Markov chain model is constructed to depict the basic working principle of IEEE 1901 protocol. The queueing process of the station buffer is captured by using Queueing theory. Furthermore, we present a detailed analysis for IEEE 1901 protocol under heterogeneous traffic conditions. Finally, we conduct extensive simulations to verify the analytical model and evaluate the MAC performance of IEEE 1901 protocol in PLC networks.
ER -