The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La modulation de phase continue (CPM) est un schéma de modulation numérique très attrayant, avec une enveloppe constante et une efficacité élevée pour répondre aux exigences de puissance et de bande passante. Les signaux CPM avec des paires de séquences d'entrée qui diffèrent par un nombre infini de positions et mappées en paires de signaux transmis avec une distance euclidienne (ED) finie sont appelés catastrophiques. Dans le schéma CPM, les séquences de données qui ont la propriété catastrophique sont appelées séquences catastrophiques ; ce sont des modèles de données de différence périodiques. Les séquences catastrophiques sont généralement de plus courte durée de fusion. L'ED quadratique normalisé minimum correspondant (MNSED) est plus petit et inférieur à la limite de distance. Deux systèmes CPM importants, à savoir, LREC et LLes programmes RC sont connus pour être catastrophiques dans la plupart des cas ; ils ont des performances globales médiocres en matière de puissance et de bande passante. Dans la littérature, il a été démontré que la probabilité de générer de telles séquences catastrophiques est négligeable. Par conséquent, les performances d'erreur asymptotique (AEP) de ces schémas CPM catastrophiques bien connus évalués avec le MNSED correspondant, sur les canaux AWGN, pourraient être trop négatives. ou pessimiste. Pour résoudre ce problème dans le canal AWGN, cet article présente un nouveau MNSED fusionné et fournit des critères pour explorer quel schéma CPM catastrophique conventionnel pourrait augmenter efficacement la durée des fusions avec des événements non périodiques fusionnés. À titre de comparaison, nous étudions les performances exactes en matière de puissance et de bande passante pour LREC et LRC CPM pour la même occupation de bande passante. Les résultats de la simulation informatique vérifient que l'AEP évalué avec le MNSED fusionné pourrait atteindre un gain allant jusqu'à 3 dB par rapport à l'approche conventionnelle.
Richard Hsin-Hsyong YANG
National Kaohsiung University of Science and Technology
Chia-Kun LEE
National Kaohsiung University of Science and Technology
Shiunn-Jang CHERN
Tamkang University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Richard Hsin-Hsyong YANG, Chia-Kun LEE, Shiunn-Jang CHERN, "Performance Improvement of the Catastrophic CPM Scheme with New Split-Merged MNSED" in IEICE TRANSACTIONS on Communications,
vol. E102-B, no. 11, pp. 2091-2103, November 2019, doi: 10.1587/transcom.2018EBP3143.
Abstract: Continuous phase modulation (CPM) is a very attractive digital modulation scheme, with constant envelope feature and high efficiency in meeting the power and bandwidth requirements. CPM signals with pairs of input sequences that differ in an infinite number of positions and map into pairs of transmitted signals with finite Euclidean distance (ED) are called catastrophic. In the CPM scheme, data sequences that have the catastrophic property are called the catastrophic sequences; they are periodic difference data patterns. The catastrophic sequences are usually with shorter length of the merger. The corresponding minimum normalized squared ED (MNSED) is smaller and below the distance bound. Two important CPM schemes, viz., LREC and LRC schemes, are known to be catastrophic for most cases; they have poor overall power and bandwidth performance. In the literatures, it has been shown that the probability of generating such catastrophic sequences are negligible, therefore, the asymptotic error performance (AEP) of those well-known catastrophic CPM schemes evaluated with the corresponding MNSED, over AWGN channels, might be too negative or pessimistic. To deal with this problem in AWGN channel, this paper presents a new split-merged MNSED and provide criteria to explore which conventional catastrophic CPM scheme could increase the length of mergers with split-merged non-periodic events, effectively. For comparison, we investigate the exact power and bandwidth performance for LREC and LRC CPM for the same bandwidth occupancy. Computer simulation results verify that the AEP evaluating with the split-merged MNSED could achieve up to 3dB gain over the conventional approach.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2018EBP3143/_p
Copier
@ARTICLE{e102-b_11_2091,
author={Richard Hsin-Hsyong YANG, Chia-Kun LEE, Shiunn-Jang CHERN, },
journal={IEICE TRANSACTIONS on Communications},
title={Performance Improvement of the Catastrophic CPM Scheme with New Split-Merged MNSED},
year={2019},
volume={E102-B},
number={11},
pages={2091-2103},
abstract={Continuous phase modulation (CPM) is a very attractive digital modulation scheme, with constant envelope feature and high efficiency in meeting the power and bandwidth requirements. CPM signals with pairs of input sequences that differ in an infinite number of positions and map into pairs of transmitted signals with finite Euclidean distance (ED) are called catastrophic. In the CPM scheme, data sequences that have the catastrophic property are called the catastrophic sequences; they are periodic difference data patterns. The catastrophic sequences are usually with shorter length of the merger. The corresponding minimum normalized squared ED (MNSED) is smaller and below the distance bound. Two important CPM schemes, viz., LREC and LRC schemes, are known to be catastrophic for most cases; they have poor overall power and bandwidth performance. In the literatures, it has been shown that the probability of generating such catastrophic sequences are negligible, therefore, the asymptotic error performance (AEP) of those well-known catastrophic CPM schemes evaluated with the corresponding MNSED, over AWGN channels, might be too negative or pessimistic. To deal with this problem in AWGN channel, this paper presents a new split-merged MNSED and provide criteria to explore which conventional catastrophic CPM scheme could increase the length of mergers with split-merged non-periodic events, effectively. For comparison, we investigate the exact power and bandwidth performance for LREC and LRC CPM for the same bandwidth occupancy. Computer simulation results verify that the AEP evaluating with the split-merged MNSED could achieve up to 3dB gain over the conventional approach.},
keywords={},
doi={10.1587/transcom.2018EBP3143},
ISSN={1745-1345},
month={November},}
Copier
TY - JOUR
TI - Performance Improvement of the Catastrophic CPM Scheme with New Split-Merged MNSED
T2 - IEICE TRANSACTIONS on Communications
SP - 2091
EP - 2103
AU - Richard Hsin-Hsyong YANG
AU - Chia-Kun LEE
AU - Shiunn-Jang CHERN
PY - 2019
DO - 10.1587/transcom.2018EBP3143
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E102-B
IS - 11
JA - IEICE TRANSACTIONS on Communications
Y1 - November 2019
AB - Continuous phase modulation (CPM) is a very attractive digital modulation scheme, with constant envelope feature and high efficiency in meeting the power and bandwidth requirements. CPM signals with pairs of input sequences that differ in an infinite number of positions and map into pairs of transmitted signals with finite Euclidean distance (ED) are called catastrophic. In the CPM scheme, data sequences that have the catastrophic property are called the catastrophic sequences; they are periodic difference data patterns. The catastrophic sequences are usually with shorter length of the merger. The corresponding minimum normalized squared ED (MNSED) is smaller and below the distance bound. Two important CPM schemes, viz., LREC and LRC schemes, are known to be catastrophic for most cases; they have poor overall power and bandwidth performance. In the literatures, it has been shown that the probability of generating such catastrophic sequences are negligible, therefore, the asymptotic error performance (AEP) of those well-known catastrophic CPM schemes evaluated with the corresponding MNSED, over AWGN channels, might be too negative or pessimistic. To deal with this problem in AWGN channel, this paper presents a new split-merged MNSED and provide criteria to explore which conventional catastrophic CPM scheme could increase the length of mergers with split-merged non-periodic events, effectively. For comparison, we investigate the exact power and bandwidth performance for LREC and LRC CPM for the same bandwidth occupancy. Computer simulation results verify that the AEP evaluating with the split-merged MNSED could achieve up to 3dB gain over the conventional approach.
ER -