The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
L’estimation de la matrice de trafic (TM) a été largement étudiée depuis des décennies. Bien que les techniques d'estimation conventionnelles supposent que les volumes de trafic restent inchangés entre les origines et les destinations, les paquets sont souvent perdus sur un chemin en raison de la rafale du trafic, de pannes silencieuses, etc. En comptant chaque chemin sur chaque liaison, nous pourrions facilement obtenir les volumes de trafic avec leur changement, mais cette approche augmente considérablement le coût de mesure puisque les compteurs sont généralement implémentés à l’aide de structures de mémoire coûteuses comme une SRAM. Cet article propose un modèle mathématique pour estimer les MT, y compris les changements de volume. La méthode est établie sur une technique booléenne de localisation de failles ; la technique nécessite moins de compteurs car elle détermine simplement si chaque lien entraîne des pertes. Cet article étend la technique booléenne afin de traiter des volumes de trafic avec des limites d'erreur qui ne nécessitent que quelques compteurs. Dans notre méthode, les erreurs d'estimation peuvent être contrôlées via des réglages de paramètres, tandis que le placement du compteur au coût minimum est déterminé avec une optimisation sous-modulaire. Des expériences numériques sont menées avec des ensembles de données réseau réels pour évaluer notre méthode.
Kohei WATABE
Nagaoka University of Technology
Toru MANO
NTT Network Innovation Lavoratories
Takeru INOUE
NTT Network Innovation Lavoratories
Kimihiro MIZUTANI
NTT Network Innovation Lavoratories
Osamu AKASHI
NTT Network Innovation Lavoratories
Kenji NAKAGAWA
Nagaoka University of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Kohei WATABE, Toru MANO, Takeru INOUE, Kimihiro MIZUTANI, Osamu AKASHI, Kenji NAKAGAWA, "Measuring Lost Packets with Minimum Counters in Traffic Matrix Estimation" in IEICE TRANSACTIONS on Communications,
vol. E102-B, no. 1, pp. 76-87, January 2019, doi: 10.1587/transcom.2018EBP3072.
Abstract: Traffic matrix (TM) estimation has been extensively studied for decades. Although conventional estimation techniques assume that traffic volumes are unchanged between origins and destinations, packets are often lost on a path due to traffic burstiness, silent failures, etc. Counting every path at every link, we could easily get the traffic volumes with their change, but this approach significantly increases the measurement cost since counters are usually implemented using expensive memory structures like a SRAM. This paper proposes a mathematical model to estimate TMs including volume changes. The method is established on a Boolean fault localization technique; the technique requires fewer counters as it simply determines whether each link is lossy. This paper extends the Boolean technique so as to deal with traffic volumes with error bounds that requires only a few counters. In our method, the estimation errors can be controlled through parameter settings, while the minimum-cost counter placement is determined with submodular optimization. Numerical experiments are conducted with real network datasets to evaluate our method.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2018EBP3072/_p
Copier
@ARTICLE{e102-b_1_76,
author={Kohei WATABE, Toru MANO, Takeru INOUE, Kimihiro MIZUTANI, Osamu AKASHI, Kenji NAKAGAWA, },
journal={IEICE TRANSACTIONS on Communications},
title={Measuring Lost Packets with Minimum Counters in Traffic Matrix Estimation},
year={2019},
volume={E102-B},
number={1},
pages={76-87},
abstract={Traffic matrix (TM) estimation has been extensively studied for decades. Although conventional estimation techniques assume that traffic volumes are unchanged between origins and destinations, packets are often lost on a path due to traffic burstiness, silent failures, etc. Counting every path at every link, we could easily get the traffic volumes with their change, but this approach significantly increases the measurement cost since counters are usually implemented using expensive memory structures like a SRAM. This paper proposes a mathematical model to estimate TMs including volume changes. The method is established on a Boolean fault localization technique; the technique requires fewer counters as it simply determines whether each link is lossy. This paper extends the Boolean technique so as to deal with traffic volumes with error bounds that requires only a few counters. In our method, the estimation errors can be controlled through parameter settings, while the minimum-cost counter placement is determined with submodular optimization. Numerical experiments are conducted with real network datasets to evaluate our method.},
keywords={},
doi={10.1587/transcom.2018EBP3072},
ISSN={1745-1345},
month={January},}
Copier
TY - JOUR
TI - Measuring Lost Packets with Minimum Counters in Traffic Matrix Estimation
T2 - IEICE TRANSACTIONS on Communications
SP - 76
EP - 87
AU - Kohei WATABE
AU - Toru MANO
AU - Takeru INOUE
AU - Kimihiro MIZUTANI
AU - Osamu AKASHI
AU - Kenji NAKAGAWA
PY - 2019
DO - 10.1587/transcom.2018EBP3072
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E102-B
IS - 1
JA - IEICE TRANSACTIONS on Communications
Y1 - January 2019
AB - Traffic matrix (TM) estimation has been extensively studied for decades. Although conventional estimation techniques assume that traffic volumes are unchanged between origins and destinations, packets are often lost on a path due to traffic burstiness, silent failures, etc. Counting every path at every link, we could easily get the traffic volumes with their change, but this approach significantly increases the measurement cost since counters are usually implemented using expensive memory structures like a SRAM. This paper proposes a mathematical model to estimate TMs including volume changes. The method is established on a Boolean fault localization technique; the technique requires fewer counters as it simply determines whether each link is lossy. This paper extends the Boolean technique so as to deal with traffic volumes with error bounds that requires only a few counters. In our method, the estimation errors can be controlled through parameter settings, while the minimum-cost counter placement is determined with submodular optimization. Numerical experiments are conducted with real network datasets to evaluate our method.
ER -