The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Nous proposons une méthode pour détecter efficacement les attaques de phishing dans les environnements mobiles. Lorsqu'un utilisateur visite un site Web d'une certaine URL, la méthode proposée compare d'abord l'URL à une liste blanche générée. Si l'URL ne figure pas dans la liste blanche, il détecte si le site est un site de phishing en fonction des résultats de la recherche Google avec une URL soigneusement affinée. De plus, la détection de phishing est effectuée uniquement lorsque l'utilisateur fournit une entrée sur le site Web, réduisant ainsi la fréquence d'appel de la détection de phishing afin de diminuer la quantité d'énergie utilisée. Nous avons mis en œuvre la méthode proposée et utilisé 8315 99.22 sites de phishing et autant de sites Web légitimes pour évaluer les performances de la méthode proposée. Nous avons atteint un taux de détection de phishing de 81.22 % avec une réduction de XNUMX % de la consommation d'énergie par rapport aux approches existantes qui utilisent également un moteur de recherche pour la détection de phishing. De plus, comme la méthode proposée n’utilise aucun autre algorithme, logiciel ou groupe de comparaison, la méthode proposée peut être facilement déployée.
Hyungkyu LEE
Korea Advanced Institute of Science and Technology (KAIST)
Younho LEE
SeoulTech
Changho SEO
Kongju National University
Hyunsoo YOON
Korea Advanced Institute of Science and Technology (KAIST)
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Hyungkyu LEE, Younho LEE, Changho SEO, Hyunsoo YOON, "Efficient Approach for Mitigating Mobile Phishing Attacks" in IEICE TRANSACTIONS on Communications,
vol. E101-B, no. 9, pp. 1982-1996, September 2018, doi: 10.1587/transcom.2018EBP3020.
Abstract: We propose a method for efficiently detecting phishing attacks in mobile environments. When a user visits a website of a certain URL, the proposed method first compares the URL to a generated whitelist. If the URL is not in the whitelist, it detects if the site is a phishing site based on the results of Google search with a carefully refined URL. In addition, the phishing detection is performed only when the user provides input to the website, thereby reducing the frequency of invoking phishing detection to decrease the amount of power used. We implemented the proposed method and used 8315 phishing sites and the same number of legitimate websites for evaluating the performance of the proposed method. We achieved a phishing detection rate of 99.22% with 81.22% reduction in energy consumption as compared to existing approaches that also use search engine for phishing detection. Moreover, because the proposed method does not employ any other algorithm, software, or comparison group, the proposed method can be easily deployed.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2018EBP3020/_p
Copier
@ARTICLE{e101-b_9_1982,
author={Hyungkyu LEE, Younho LEE, Changho SEO, Hyunsoo YOON, },
journal={IEICE TRANSACTIONS on Communications},
title={Efficient Approach for Mitigating Mobile Phishing Attacks},
year={2018},
volume={E101-B},
number={9},
pages={1982-1996},
abstract={We propose a method for efficiently detecting phishing attacks in mobile environments. When a user visits a website of a certain URL, the proposed method first compares the URL to a generated whitelist. If the URL is not in the whitelist, it detects if the site is a phishing site based on the results of Google search with a carefully refined URL. In addition, the phishing detection is performed only when the user provides input to the website, thereby reducing the frequency of invoking phishing detection to decrease the amount of power used. We implemented the proposed method and used 8315 phishing sites and the same number of legitimate websites for evaluating the performance of the proposed method. We achieved a phishing detection rate of 99.22% with 81.22% reduction in energy consumption as compared to existing approaches that also use search engine for phishing detection. Moreover, because the proposed method does not employ any other algorithm, software, or comparison group, the proposed method can be easily deployed.},
keywords={},
doi={10.1587/transcom.2018EBP3020},
ISSN={1745-1345},
month={September},}
Copier
TY - JOUR
TI - Efficient Approach for Mitigating Mobile Phishing Attacks
T2 - IEICE TRANSACTIONS on Communications
SP - 1982
EP - 1996
AU - Hyungkyu LEE
AU - Younho LEE
AU - Changho SEO
AU - Hyunsoo YOON
PY - 2018
DO - 10.1587/transcom.2018EBP3020
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E101-B
IS - 9
JA - IEICE TRANSACTIONS on Communications
Y1 - September 2018
AB - We propose a method for efficiently detecting phishing attacks in mobile environments. When a user visits a website of a certain URL, the proposed method first compares the URL to a generated whitelist. If the URL is not in the whitelist, it detects if the site is a phishing site based on the results of Google search with a carefully refined URL. In addition, the phishing detection is performed only when the user provides input to the website, thereby reducing the frequency of invoking phishing detection to decrease the amount of power used. We implemented the proposed method and used 8315 phishing sites and the same number of legitimate websites for evaluating the performance of the proposed method. We achieved a phishing detection rate of 99.22% with 81.22% reduction in energy consumption as compared to existing approaches that also use search engine for phishing detection. Moreover, because the proposed method does not employ any other algorithm, software, or comparison group, the proposed method can be easily deployed.
ER -