The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Ces dernières années, la fourniture de services de localisation de cibles mobiles dans un environnement fermé a suscité un intérêt croissant. Afin de fournir de bonnes performances de localisation et de suivi des drones dans des scénarios de refus du GPS, cet article propose un système d'identification par radiofréquence (RFID) multi-étiquettes facile à équiper et n'exigeant pas les ressources limitées du drone qui n'est pas sensible aux contraintes de performance du processeur et de coût par rapport aux approches basées sur la vision par ordinateur. Les étiquettes RFID passives, sans batterie, ont une résolution ultra haute de niveau millimétrique. Nous attachons plusieurs balises au drone et formons plusieurs ensembles de réseaux d'antennes virtuelles pendant le mouvement, évitant ainsi de disposer des antennes redondantes dans les applications et calibrant la chaîne de vitesse pour améliorer les performances de suivi. Après avoir combiné le système de navigation inertielle à sangles (SINS) porté par le drone, nous avons établi un modèle d'intégration couplé qui peut supprimer l'erreur de dérive du SINS avec le temps. L'expérience a été conçue dans des scénarios bidimensionnels et tridimensionnels, et le système de positionnement intégré basé sur SINS/RFID a été évalué. Enfin, nous avons discuté de l'impact de certains paramètres, cette approche innovante est vérifiée dans des scénarios réels.
Xiang LU
University of Science and Technology of China
Ziyang CHEN
University of Science and Technology of China
Lianpo WANG
University of Science and Technology of China
Ruidong LI
National Institute of Information and Communications and Technology (NICT)
Chao ZHAI
University of Science and Technology of China
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Xiang LU, Ziyang CHEN, Lianpo WANG, Ruidong LI, Chao ZHAI, "RF-Drone: Multi-Tag System for RF-ID Enables Drone Tracking in GPS-Denied Environments" in IEICE TRANSACTIONS on Communications,
vol. E102-B, no. 10, pp. 1941-1950, October 2019, doi: 10.1587/transcom.2018DRP0005.
Abstract: In resent years, providing location services for mobile targets in a closed environment has been a growing interest. In order to provide good localization and tracking performance for drones in GPS-denied scenarios, this paper proposes a multi-tag radio frequency identification (RFID) system that is easy to equip and does not take up the limited resources of the drone which is not susceptible to processor performance and cost constraints compared with computer vision based approaches. The passive RFID tags, no battery equipped, have an ultra-high resolution of millimeter level. We attach multiple tags to the drone and form multiple sets of virtual antenna arrays during motion, avoiding arranging redundant antennas in applications, and calibrating the speed chain to improve tracking performance. After combining the strap-down inertial navigation system (SINS) carried by the drone, we have established a coupled integration model that can suppress the drift error of SINS with time. The experiment was designed in bi-dimensional and three-dimensional scenarios, and the integrated positioning system based on SINS/RFID was evaluated. Finally, we discussed the impact of some parameters, this innovative approach is verified in real scenarios.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2018DRP0005/_p
Copier
@ARTICLE{e102-b_10_1941,
author={Xiang LU, Ziyang CHEN, Lianpo WANG, Ruidong LI, Chao ZHAI, },
journal={IEICE TRANSACTIONS on Communications},
title={RF-Drone: Multi-Tag System for RF-ID Enables Drone Tracking in GPS-Denied Environments},
year={2019},
volume={E102-B},
number={10},
pages={1941-1950},
abstract={In resent years, providing location services for mobile targets in a closed environment has been a growing interest. In order to provide good localization and tracking performance for drones in GPS-denied scenarios, this paper proposes a multi-tag radio frequency identification (RFID) system that is easy to equip and does not take up the limited resources of the drone which is not susceptible to processor performance and cost constraints compared with computer vision based approaches. The passive RFID tags, no battery equipped, have an ultra-high resolution of millimeter level. We attach multiple tags to the drone and form multiple sets of virtual antenna arrays during motion, avoiding arranging redundant antennas in applications, and calibrating the speed chain to improve tracking performance. After combining the strap-down inertial navigation system (SINS) carried by the drone, we have established a coupled integration model that can suppress the drift error of SINS with time. The experiment was designed in bi-dimensional and three-dimensional scenarios, and the integrated positioning system based on SINS/RFID was evaluated. Finally, we discussed the impact of some parameters, this innovative approach is verified in real scenarios.},
keywords={},
doi={10.1587/transcom.2018DRP0005},
ISSN={1745-1345},
month={October},}
Copier
TY - JOUR
TI - RF-Drone: Multi-Tag System for RF-ID Enables Drone Tracking in GPS-Denied Environments
T2 - IEICE TRANSACTIONS on Communications
SP - 1941
EP - 1950
AU - Xiang LU
AU - Ziyang CHEN
AU - Lianpo WANG
AU - Ruidong LI
AU - Chao ZHAI
PY - 2019
DO - 10.1587/transcom.2018DRP0005
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E102-B
IS - 10
JA - IEICE TRANSACTIONS on Communications
Y1 - October 2019
AB - In resent years, providing location services for mobile targets in a closed environment has been a growing interest. In order to provide good localization and tracking performance for drones in GPS-denied scenarios, this paper proposes a multi-tag radio frequency identification (RFID) system that is easy to equip and does not take up the limited resources of the drone which is not susceptible to processor performance and cost constraints compared with computer vision based approaches. The passive RFID tags, no battery equipped, have an ultra-high resolution of millimeter level. We attach multiple tags to the drone and form multiple sets of virtual antenna arrays during motion, avoiding arranging redundant antennas in applications, and calibrating the speed chain to improve tracking performance. After combining the strap-down inertial navigation system (SINS) carried by the drone, we have established a coupled integration model that can suppress the drift error of SINS with time. The experiment was designed in bi-dimensional and three-dimensional scenarios, and the integrated positioning system based on SINS/RFID was evaluated. Finally, we discussed the impact of some parameters, this innovative approach is verified in real scenarios.
ER -