The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article présente les caractéristiques de la perte de trajet produite par le blocage des panneaux de signalisation. Les bandes multifréquences, y compris les bandes hautes fréquences jusqu'à 40 GHz, sont analysées sur la base des résultats de mesures dans des environnements de microcellules urbaines. Il est démontré que l'affaiblissement de trajet mesuré augmente par rapport à l'affaiblissement de trajet en espace libre, même sur une route droite à visibilité directe, et que l'atténuation excessive est causée par les effets de blocage des panneaux de signalisation. Il est également démontré que la zone de mesure affectée par le blocage devient petite à mesure que la fréquence augmente. L'objet bloquant occupe la même zone pour toutes les fréquences, mais il occupe une plus grande partie de la zone de Fresnel à mesure que la fréquence augmente. Par conséquent, en cas de blocage, la perte excessive dans les bandes de hautes fréquences devient plus importante que dans les bandes de basses fréquences. De plus, la validité de deux modèles de pertes sur trajet de blocage est vérifiée sur la base des résultats de mesure. Le premier est le modèle de blocage 3GPP et le second est le modèle de blocage proposé, qui est une version étendue du modèle de diffraction de base de l'UIT-R P.526. Il est montré que ces modèles de blocage peuvent prédire la perte de trajet augmentée par le blocage des panneaux de signalisation et que leur erreur quadratique moyenne peut être améliorée par rapport à celle du modèle à deux pentes 3GPP et d'un modèle de perte de trajet en espace libre. Le modèle de blocage 3GPP s'avère plus précis pour 26.4 et 37.1 GHz, tandis que le modèle proposé est plus précis pour 0.8, 2.2 et 4.7 GHz. Les résultats montrent que la perte de chemin de blocage due aux panneaux de signalisation est clarifiée dans une large gamme de fréquences, et il est vérifié que le modèle de blocage 3GPP et le modèle de blocage proposé peuvent prédire avec précision la perte de chemin de blocage.
Motoharu SASAKI
NTT Corporation
Minoru INOMATA
NTT Corporation
Wataru YAMADA
NTT Corporation
Naoki KITA
NTT Corporation
Takeshi ONIZAWA
NTT Corporation
Masashi NAKATSUGAWA
NTT Corporation
Koshiro KITAO
NTT DOCOMO, INC.
Tetsuro IMAI
NTT DOCOMO, INC.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Motoharu SASAKI, Minoru INOMATA, Wataru YAMADA, Naoki KITA, Takeshi ONIZAWA, Masashi NAKATSUGAWA, Koshiro KITAO, Tetsuro IMAI, "Path Loss Model Considering Blockage Effects of Traffic Signs Up to 40GHz in Urban Microcell Environments" in IEICE TRANSACTIONS on Communications,
vol. E101-B, no. 8, pp. 1891-1902, August 2018, doi: 10.1587/transcom.2017EBP3255.
Abstract: This paper presents the characteristics of path loss produced by traffic sign blockage. Multi frequency bands including high frequency bands up to 40 GHz are analyzed on the basis of measurement results in urban microcell environments. It is shown that the measured path loss increases compared to free space path loss even on a straight line-of-sight road, and that the excess attenuation is caused by the blockage effects of traffic signs. It is also shown that the measurement area affected by the blockage becomes small as frequency increases. The blocking object occupies the same area for all frequencies, but it takes up a larger portion of the Fresnel Zone as frequency increases. Therefore, if blockage occurs, the excess loss in high frequency bands becomes larger than in low frequency bands. In addition, the validity of two blockage path loss models is verified on the basis of measurement results. The first is the 3GPP blockage model and the second is the proposed blockage model, which is an expanded version of the basic diffraction model in ITU-R P.526. It is shown that these blockage models can predict the path loss increased by the traffic sign blockage and that their root mean square error can be improved compared to that of the 3GPP two slope model and a free space path loss model. The 3GPP blockage model is found to be more accurate for 26.4 and 37.1GHz, while the proposed model is more accurate for 0.8, 2.2, and 4.7GHz. The results show the blockage path loss due to traffic signs is clarified in a wide frequency range, and it is verified that the 3GPP blockage model and the proposed blockage model can accurately predict the blockage path loss.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2017EBP3255/_p
Copier
@ARTICLE{e101-b_8_1891,
author={Motoharu SASAKI, Minoru INOMATA, Wataru YAMADA, Naoki KITA, Takeshi ONIZAWA, Masashi NAKATSUGAWA, Koshiro KITAO, Tetsuro IMAI, },
journal={IEICE TRANSACTIONS on Communications},
title={Path Loss Model Considering Blockage Effects of Traffic Signs Up to 40GHz in Urban Microcell Environments},
year={2018},
volume={E101-B},
number={8},
pages={1891-1902},
abstract={This paper presents the characteristics of path loss produced by traffic sign blockage. Multi frequency bands including high frequency bands up to 40 GHz are analyzed on the basis of measurement results in urban microcell environments. It is shown that the measured path loss increases compared to free space path loss even on a straight line-of-sight road, and that the excess attenuation is caused by the blockage effects of traffic signs. It is also shown that the measurement area affected by the blockage becomes small as frequency increases. The blocking object occupies the same area for all frequencies, but it takes up a larger portion of the Fresnel Zone as frequency increases. Therefore, if blockage occurs, the excess loss in high frequency bands becomes larger than in low frequency bands. In addition, the validity of two blockage path loss models is verified on the basis of measurement results. The first is the 3GPP blockage model and the second is the proposed blockage model, which is an expanded version of the basic diffraction model in ITU-R P.526. It is shown that these blockage models can predict the path loss increased by the traffic sign blockage and that their root mean square error can be improved compared to that of the 3GPP two slope model and a free space path loss model. The 3GPP blockage model is found to be more accurate for 26.4 and 37.1GHz, while the proposed model is more accurate for 0.8, 2.2, and 4.7GHz. The results show the blockage path loss due to traffic signs is clarified in a wide frequency range, and it is verified that the 3GPP blockage model and the proposed blockage model can accurately predict the blockage path loss.},
keywords={},
doi={10.1587/transcom.2017EBP3255},
ISSN={1745-1345},
month={August},}
Copier
TY - JOUR
TI - Path Loss Model Considering Blockage Effects of Traffic Signs Up to 40GHz in Urban Microcell Environments
T2 - IEICE TRANSACTIONS on Communications
SP - 1891
EP - 1902
AU - Motoharu SASAKI
AU - Minoru INOMATA
AU - Wataru YAMADA
AU - Naoki KITA
AU - Takeshi ONIZAWA
AU - Masashi NAKATSUGAWA
AU - Koshiro KITAO
AU - Tetsuro IMAI
PY - 2018
DO - 10.1587/transcom.2017EBP3255
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E101-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2018
AB - This paper presents the characteristics of path loss produced by traffic sign blockage. Multi frequency bands including high frequency bands up to 40 GHz are analyzed on the basis of measurement results in urban microcell environments. It is shown that the measured path loss increases compared to free space path loss even on a straight line-of-sight road, and that the excess attenuation is caused by the blockage effects of traffic signs. It is also shown that the measurement area affected by the blockage becomes small as frequency increases. The blocking object occupies the same area for all frequencies, but it takes up a larger portion of the Fresnel Zone as frequency increases. Therefore, if blockage occurs, the excess loss in high frequency bands becomes larger than in low frequency bands. In addition, the validity of two blockage path loss models is verified on the basis of measurement results. The first is the 3GPP blockage model and the second is the proposed blockage model, which is an expanded version of the basic diffraction model in ITU-R P.526. It is shown that these blockage models can predict the path loss increased by the traffic sign blockage and that their root mean square error can be improved compared to that of the 3GPP two slope model and a free space path loss model. The 3GPP blockage model is found to be more accurate for 26.4 and 37.1GHz, while the proposed model is more accurate for 0.8, 2.2, and 4.7GHz. The results show the blockage path loss due to traffic signs is clarified in a wide frequency range, and it is verified that the 3GPP blockage model and the proposed blockage model can accurately predict the blockage path loss.
ER -