The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article étudie l'impact des interférences inter-porteuses (ICI) dues à la propagation Doppler sur les performances du taux d'erreur de paquets (PER) dans l'accès sans fil par paquets à multiplexage orthogonal de fréquence et de code (OFCDM) utilisant le turbocodage dans un canal à évanouissement par trajets multiples, et décrit l'optimisation de l'espacement des sous-porteuses, Δ f, c'est-à-dire le nombre de sous-porteuses, Nc, avec une bande passante d'environ 50 à 100 MHz. Les résultats de simulation montrent que bien que l'OFCDM non codé dans un canal à évanouissement Rayleigh plat à 1 trajet soit affecté par l'ICI provoqué par la propagation Doppler lorsque la fréquence Doppler maximale, fD, devient supérieur à 5 % de Δ f, l'OFCDM employant le turbocodage dans un canal à évanouissements Rayleigh à 24 trajets est robuste à la propagation Doppler et la dégradation n'est apparente que lorsque fD atteint plus de 10 % de Δ f. En effet, le gain du turbocodage et l'effet de diversité de fréquence compensent la dégradation due à l'ICI. Pendant ce temps, la performance du PER avec un plus grand Nc est dégradé, puisque l'effet de la capacité de correction d'erreur devient plus faible en raison de la plus grande variance des symboles OFCDM désétalés associée à la bande passante d'étalement plus étroite dans le domaine fréquentiel. Par conséquent, parallèlement à l'efficacité des trames de paquets pour prendre en charge l'intervalle de garde afin de compenser le temps de retard maximum par trajets multiples de 1 µsec, nous précisons que le nombre optimal de sous-porteuses est d'environ 512-1024 (le Δ correspondant f devient 156.3-78.1 kHz) pour l'accès sans fil par paquets OFCDM à large bande en supposant une bande passante de 50 à 100 MHz.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Hiroyuki ATARASHI, Mamoru SAWAHASHI, "Investigation of Inter-Carrier Interference due to Doppler Spread in OFCDM Broadband Packet Wireless Access" in IEICE TRANSACTIONS on Communications,
vol. E85-B, no. 12, pp. 2684-2693, December 2002, doi: .
Abstract: This paper investigates the impact of inter-carrier interference (ICI) due to Doppler spread on the packet error rate (PER) performance in Orthogonal Frequency and Code Division Multiplexing (OFCDM) packet wireless access employing turbo coding in a multipath fading channel, and describes the optimization of the sub-carrier spacing, Δ f, i.e., the number of sub-carriers, Nc, with an approximate 50-100 MHz bandwidth. Simulation results show that although the uncoded OFCDM in a 1-path flat Rayleigh fading channel is affected by the ICI caused by the Doppler spread when the maximum Doppler frequency, fD, becomes more than 5% of Δ f, OFCDM employing turbo coding in a 24-path Rayleigh fading channel is robust against Doppler spread and the degradation is not apparent until fD reaches more than 10% of Δ f. This is because the turbo coding gain and the frequency diversity effect compensate for the degradation due to ICI. Meanwhile, the PER performance with a larger Nc is degraded, since the effect of the error correction capability becomes smaller due to the larger variance of the despread OFCDM symbols associated with the narrower spreading bandwidth in the frequency domain. Consequently, along with the packet frame efficiency for accommodating the guard interval to compensate for the maximum multipath delay time of 1 µsec, we clarify that the optimum number of sub-carriers is approximately 512-1024 (the corresponding Δ f becomes 156.3-78.1 kHz) for broadband OFCDM packet wireless access assuming a 50-100 MHz bandwidth.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e85-b_12_2684/_p
Copier
@ARTICLE{e85-b_12_2684,
author={Hiroyuki ATARASHI, Mamoru SAWAHASHI, },
journal={IEICE TRANSACTIONS on Communications},
title={Investigation of Inter-Carrier Interference due to Doppler Spread in OFCDM Broadband Packet Wireless Access},
year={2002},
volume={E85-B},
number={12},
pages={2684-2693},
abstract={This paper investigates the impact of inter-carrier interference (ICI) due to Doppler spread on the packet error rate (PER) performance in Orthogonal Frequency and Code Division Multiplexing (OFCDM) packet wireless access employing turbo coding in a multipath fading channel, and describes the optimization of the sub-carrier spacing, Δ f, i.e., the number of sub-carriers, Nc, with an approximate 50-100 MHz bandwidth. Simulation results show that although the uncoded OFCDM in a 1-path flat Rayleigh fading channel is affected by the ICI caused by the Doppler spread when the maximum Doppler frequency, fD, becomes more than 5% of Δ f, OFCDM employing turbo coding in a 24-path Rayleigh fading channel is robust against Doppler spread and the degradation is not apparent until fD reaches more than 10% of Δ f. This is because the turbo coding gain and the frequency diversity effect compensate for the degradation due to ICI. Meanwhile, the PER performance with a larger Nc is degraded, since the effect of the error correction capability becomes smaller due to the larger variance of the despread OFCDM symbols associated with the narrower spreading bandwidth in the frequency domain. Consequently, along with the packet frame efficiency for accommodating the guard interval to compensate for the maximum multipath delay time of 1 µsec, we clarify that the optimum number of sub-carriers is approximately 512-1024 (the corresponding Δ f becomes 156.3-78.1 kHz) for broadband OFCDM packet wireless access assuming a 50-100 MHz bandwidth.},
keywords={},
doi={},
ISSN={},
month={December},}
Copier
TY - JOUR
TI - Investigation of Inter-Carrier Interference due to Doppler Spread in OFCDM Broadband Packet Wireless Access
T2 - IEICE TRANSACTIONS on Communications
SP - 2684
EP - 2693
AU - Hiroyuki ATARASHI
AU - Mamoru SAWAHASHI
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E85-B
IS - 12
JA - IEICE TRANSACTIONS on Communications
Y1 - December 2002
AB - This paper investigates the impact of inter-carrier interference (ICI) due to Doppler spread on the packet error rate (PER) performance in Orthogonal Frequency and Code Division Multiplexing (OFCDM) packet wireless access employing turbo coding in a multipath fading channel, and describes the optimization of the sub-carrier spacing, Δ f, i.e., the number of sub-carriers, Nc, with an approximate 50-100 MHz bandwidth. Simulation results show that although the uncoded OFCDM in a 1-path flat Rayleigh fading channel is affected by the ICI caused by the Doppler spread when the maximum Doppler frequency, fD, becomes more than 5% of Δ f, OFCDM employing turbo coding in a 24-path Rayleigh fading channel is robust against Doppler spread and the degradation is not apparent until fD reaches more than 10% of Δ f. This is because the turbo coding gain and the frequency diversity effect compensate for the degradation due to ICI. Meanwhile, the PER performance with a larger Nc is degraded, since the effect of the error correction capability becomes smaller due to the larger variance of the despread OFCDM symbols associated with the narrower spreading bandwidth in the frequency domain. Consequently, along with the packet frame efficiency for accommodating the guard interval to compensate for the maximum multipath delay time of 1 µsec, we clarify that the optimum number of sub-carriers is approximately 512-1024 (the corresponding Δ f becomes 156.3-78.1 kHz) for broadband OFCDM packet wireless access assuming a 50-100 MHz bandwidth.
ER -