The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Nous avons étudié un processus de couplage à trois ondes se produisant dans une expérience de transmission de puissance par micro-ondes (MPT) dans le plasma ionosphérique en réalisant des expériences informatiques avec un modèle électromagnétique PIC (Particle-In-Cell) unidimensionnel. Afin d'examiner la variation spatiale du processus de couplage, nous avons émis en continu une onde électromagnétique intense à partir d'une antenne située à une limite de simulation. Dans le couplage à trois ondes, une onde électrostatique basse fréquence est excitée comme conséquence d'une interaction non linéaire entre l'onde de pompe se propageant vers l'avant et l'onde rétrodiffusée. Dans les expériences informatiques, des sursauts électrostatiques basse fréquence sont observés de manière discontinue dans l’espace. La discontinuité des salves électrostatiques est expliquée par l'échauffement local des électrons dû aux salves et à la modification associée de la relation de dispersion des ondes. Dans le cas où l’onde de pompe se propage le long du champ géomagnétique Bposte, plusieurs sursauts d'ondes de Langmuir sont observés. Étant donné que la première rafale consomme une partie de l’énergie de l’onde de pompe, celle-ci est affaiblie et ne peut pas déclencher le couplage à trois ondes au-delà de la région où se produit la rafale. Puisque la relation de dispersion de l'onde de Langmuir est variable en raison du chauffage local des électrons par le sursaut, la condition de couplage finit par ne plus être satisfaite et la première interaction devient faible. Une autre explosion d'ondes de Langmuir est observée dans une région différente au-delà de l'emplacement de la première explosion. Dans le cas d'une propagation perpendiculaire, l'onde hybride supérieure, l'une des branches modales des ondes harmoniques cyclotroniques électroniques, est excitée. Puisque la relation de dispersion de l’onde hybride supérieure est moins sensible à la température électronique, la condition de couplage n’est pas facilement violée par l’augmentation de la température. En conséquence, le couplage à trois ondes a lieu périodiquement dans le temps et finalement le rapport de transmission des micro-ondes atteint environ 20 % alors que pratiquement aucune atténuation des ondes de pompe n'est observée après la première explosion électrostatique dans le cas parallèle.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Hideyuki USUI, Hiroshi MATSUMOTO, Roger GENDRIN, Takeo NISHIKAWA, "Computer Experiments on a Three-Wave Coupling in Association with Microwave Power Transmission in Space Plasma" in IEICE TRANSACTIONS on Communications,
vol. E84-B, no. 9, pp. 2566-2573, September 2001, doi: .
Abstract: We studied a three-wave coupling process occurring in microwave power transmission (MPT) experiment in the ionospheric plasma by performing computer experiments with one-dimensional electromagnetic PIC (Particle-In-Cell) model. In order to examine the spatial variation of the coupling process, we continuously emitted intense electromagnetic wave from an antenna located at a simulation boundary. In the three-wave coupling, a low-frequency electrostatic wave is excited as the consequence of a nonlinear interaction between the forward propagating pump wave and backscattered one. In the computer experiments, low-frequency electrostatic bursts are discontinuously observed in space. The discontinuity of the electrostatic bursts is accounted for by the local electron heating due to the bursts and associated modification of the wave dispersion relation. In a case where the pump wave propagates along the geomagnetic field Bext, several bursts of Langmuir waves are observed. Since the first burst consumes a part of the pump wave energy, the pump wave is weakened and cannot trigger the three-wave coupling beyond the region where the burst occurs. Since the dispersion relation of the Langmuir wave is variable due to the local electron heating by the burst, the coupling condition eventually becomes unsatisfied and the first interaction becomes weak. Another burst of Langmuir waves is observed at a different region beyond the location of the first burst. In the case of perpendicular propagation, the upper hybrid wave, one of the mode branches of the electron cyclotron harmonic waves, is excited. Since the dispersion relation of the upper hybrid wave is less sensitive to the electron temperature, the coupling condition is not easily violated by the temperature increase. As a result, the three-wave coupling periodically takes place in time and eventually the transmission ratio of the microwaves becomes approximately 20% while almost no attenuation of the pump waves is observed after the first electrostatic burst in the parallel case.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e84-b_9_2566/_p
Copier
@ARTICLE{e84-b_9_2566,
author={Hideyuki USUI, Hiroshi MATSUMOTO, Roger GENDRIN, Takeo NISHIKAWA, },
journal={IEICE TRANSACTIONS on Communications},
title={Computer Experiments on a Three-Wave Coupling in Association with Microwave Power Transmission in Space Plasma},
year={2001},
volume={E84-B},
number={9},
pages={2566-2573},
abstract={We studied a three-wave coupling process occurring in microwave power transmission (MPT) experiment in the ionospheric plasma by performing computer experiments with one-dimensional electromagnetic PIC (Particle-In-Cell) model. In order to examine the spatial variation of the coupling process, we continuously emitted intense electromagnetic wave from an antenna located at a simulation boundary. In the three-wave coupling, a low-frequency electrostatic wave is excited as the consequence of a nonlinear interaction between the forward propagating pump wave and backscattered one. In the computer experiments, low-frequency electrostatic bursts are discontinuously observed in space. The discontinuity of the electrostatic bursts is accounted for by the local electron heating due to the bursts and associated modification of the wave dispersion relation. In a case where the pump wave propagates along the geomagnetic field Bext, several bursts of Langmuir waves are observed. Since the first burst consumes a part of the pump wave energy, the pump wave is weakened and cannot trigger the three-wave coupling beyond the region where the burst occurs. Since the dispersion relation of the Langmuir wave is variable due to the local electron heating by the burst, the coupling condition eventually becomes unsatisfied and the first interaction becomes weak. Another burst of Langmuir waves is observed at a different region beyond the location of the first burst. In the case of perpendicular propagation, the upper hybrid wave, one of the mode branches of the electron cyclotron harmonic waves, is excited. Since the dispersion relation of the upper hybrid wave is less sensitive to the electron temperature, the coupling condition is not easily violated by the temperature increase. As a result, the three-wave coupling periodically takes place in time and eventually the transmission ratio of the microwaves becomes approximately 20% while almost no attenuation of the pump waves is observed after the first electrostatic burst in the parallel case.},
keywords={},
doi={},
ISSN={},
month={September},}
Copier
TY - JOUR
TI - Computer Experiments on a Three-Wave Coupling in Association with Microwave Power Transmission in Space Plasma
T2 - IEICE TRANSACTIONS on Communications
SP - 2566
EP - 2573
AU - Hideyuki USUI
AU - Hiroshi MATSUMOTO
AU - Roger GENDRIN
AU - Takeo NISHIKAWA
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E84-B
IS - 9
JA - IEICE TRANSACTIONS on Communications
Y1 - September 2001
AB - We studied a three-wave coupling process occurring in microwave power transmission (MPT) experiment in the ionospheric plasma by performing computer experiments with one-dimensional electromagnetic PIC (Particle-In-Cell) model. In order to examine the spatial variation of the coupling process, we continuously emitted intense electromagnetic wave from an antenna located at a simulation boundary. In the three-wave coupling, a low-frequency electrostatic wave is excited as the consequence of a nonlinear interaction between the forward propagating pump wave and backscattered one. In the computer experiments, low-frequency electrostatic bursts are discontinuously observed in space. The discontinuity of the electrostatic bursts is accounted for by the local electron heating due to the bursts and associated modification of the wave dispersion relation. In a case where the pump wave propagates along the geomagnetic field Bext, several bursts of Langmuir waves are observed. Since the first burst consumes a part of the pump wave energy, the pump wave is weakened and cannot trigger the three-wave coupling beyond the region where the burst occurs. Since the dispersion relation of the Langmuir wave is variable due to the local electron heating by the burst, the coupling condition eventually becomes unsatisfied and the first interaction becomes weak. Another burst of Langmuir waves is observed at a different region beyond the location of the first burst. In the case of perpendicular propagation, the upper hybrid wave, one of the mode branches of the electron cyclotron harmonic waves, is excited. Since the dispersion relation of the upper hybrid wave is less sensitive to the electron temperature, the coupling condition is not easily violated by the temperature increase. As a result, the three-wave coupling periodically takes place in time and eventually the transmission ratio of the microwaves becomes approximately 20% while almost no attenuation of the pump waves is observed after the first electrostatic burst in the parallel case.
ER -