The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La formation précise et rapide de multifaisceaux, y compris le contrôle nul, sera l'une des technologies clés pour les futurs systèmes de communication par satellite utilisant l'estimation SDMA (Space Division Multiple Access) et DOA (Direction of Arrival). Afin de réaliser une formation multifaisceaux précise, une procédure d’étalonnage est indispensable car plusieurs facteurs inévitables dégradent les modèles multifaisceaux du réseau. En particulier, le déséquilibre d'amplitude et de phase entre les circuits RF doit être calibré fréquemment et rapidement lorsque le système de réseau existe dans un environnement variable, car le déséquilibre se produit facilement en raison des caractéristiques thermiques de chaque circuit RF. Cet article propose un schéma d'étalonnage à distance simple et rapide compensant le déséquilibre d'amplitude et de phase entre les circuits RF d'une antenne réseau adaptative d'émission à bord d'un satellite. Cet étalonnage est effectué au niveau d'une station distante telle qu'une station passerelle au sol dans le système de communication par satellite, en utilisant le signal reçu comprenant les codes orthogonaux multiplexés dans le temps transmis depuis l'antenne réseau embarquée sur le satellite. Étant donné que les facteurs d'étalonnage pour tous les éléments d'antenne peuvent être obtenus simultanément par le traitement du signal numérique parallèle, le temps d'étalonnage peut être considérablement réduit. La précision de cet étalonnage est estimée par simulation. Les résultats de la simulation montrent que le déséquilibre d'amplitude entre les circuits RF peut être supprimé dans la plage de -0.5 dB à +0.25 dB pour le déséquilibre initial allant de -2 dB à +3.5 dB, le déséquilibre de phase peut être supprimé dans la plage de -3 degrés. . à +3 degrés. pour le déséquilibre initial allant de -120 ou +180 degrés. par cette méthode. Les écarts d'amplitude et de phase entre les éléments peuvent être supprimés respectivement dans une plage de 0.36 dB et 2.5 degrés avec une probabilité de 80 %. Les résultats de simulation montrent également que cette méthode d'étalonnage est valide dans des conditions de rapport porteuse/bruit relativement mauvaises, telles que -10 dB au niveau du récepteur. Une bonne amélioration des modèles multifaisceaux grâce à cet étalonnage est montrée dans des conditions de faible rapport porteuse sur bruit.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Masayuki OODO, Ryu MIURA, "A Remote Calibration for a Transmitting Array Antenna by Using Synchronous Orthogonal Codes" in IEICE TRANSACTIONS on Communications,
vol. E84-B, no. 7, pp. 1808-1815, July 2001, doi: .
Abstract: Precise and quick multi-beam forming including null control will be one of the key technologies for the future satellite communication systems utilizing SDMA (Space Division Multiple Access) and DOA (Direction of Arrival) estimation. In order to realize the precise multi-beam forming, calibration procedure is indispensable since there are several unavoidable factors that degrade the multi-beam patterns of the array. Particularly amplitude and phase imbalance between RF circuits needs to be calibrated frequently and quickly when the array system exists in changeable environment since the imbalance easily occurs due to thermal characteristics of each RF circuit. This paper proposes a simple and high-speed remote calibration scheme compensating for amplitude and phase imbalance among RF circuits of a transmitting adaptive array antenna onboard satellite. This calibration is conducted at a remote station such as a gateway station on the ground in the satellite communication system, by utilizing the received signal including the temporally multiplexed orthogonal codes transmitted from the array antenna onboard satellite. Since the calibration factors for all the antenna elements can be simultaneously obtained by the parallel digital signal processing, calibration time can be drastically reduced. The accuracy of this calibration is estimated by simulation. Simulation results show that the amplitude imbalance among RF circuits can be suppressed within the range from -0.5 dB to +0.25 dB for the initial imbalance ranging from -2 dB to +3.5 dB, phase imbalance can be suppressed within the range of -3 deg. to +3 deg. for the initial imbalance ranging from -120 or +180 deg. by this method. The amplitude and phase deviations among the elements can be suppressed within 0.36 dB and 2.5 degrees, respectively, in 80% of probability. Simulation results also show that this calibration method is valid under the relatively bad carrier-to-noise conditions such as -10 dB at the receiver. Good improvement of the multi-beam patterns by this calibration is shown under the low carrier-to-noise ratio condition.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e84-b_7_1808/_p
Copier
@ARTICLE{e84-b_7_1808,
author={Masayuki OODO, Ryu MIURA, },
journal={IEICE TRANSACTIONS on Communications},
title={A Remote Calibration for a Transmitting Array Antenna by Using Synchronous Orthogonal Codes},
year={2001},
volume={E84-B},
number={7},
pages={1808-1815},
abstract={Precise and quick multi-beam forming including null control will be one of the key technologies for the future satellite communication systems utilizing SDMA (Space Division Multiple Access) and DOA (Direction of Arrival) estimation. In order to realize the precise multi-beam forming, calibration procedure is indispensable since there are several unavoidable factors that degrade the multi-beam patterns of the array. Particularly amplitude and phase imbalance between RF circuits needs to be calibrated frequently and quickly when the array system exists in changeable environment since the imbalance easily occurs due to thermal characteristics of each RF circuit. This paper proposes a simple and high-speed remote calibration scheme compensating for amplitude and phase imbalance among RF circuits of a transmitting adaptive array antenna onboard satellite. This calibration is conducted at a remote station such as a gateway station on the ground in the satellite communication system, by utilizing the received signal including the temporally multiplexed orthogonal codes transmitted from the array antenna onboard satellite. Since the calibration factors for all the antenna elements can be simultaneously obtained by the parallel digital signal processing, calibration time can be drastically reduced. The accuracy of this calibration is estimated by simulation. Simulation results show that the amplitude imbalance among RF circuits can be suppressed within the range from -0.5 dB to +0.25 dB for the initial imbalance ranging from -2 dB to +3.5 dB, phase imbalance can be suppressed within the range of -3 deg. to +3 deg. for the initial imbalance ranging from -120 or +180 deg. by this method. The amplitude and phase deviations among the elements can be suppressed within 0.36 dB and 2.5 degrees, respectively, in 80% of probability. Simulation results also show that this calibration method is valid under the relatively bad carrier-to-noise conditions such as -10 dB at the receiver. Good improvement of the multi-beam patterns by this calibration is shown under the low carrier-to-noise ratio condition.},
keywords={},
doi={},
ISSN={},
month={July},}
Copier
TY - JOUR
TI - A Remote Calibration for a Transmitting Array Antenna by Using Synchronous Orthogonal Codes
T2 - IEICE TRANSACTIONS on Communications
SP - 1808
EP - 1815
AU - Masayuki OODO
AU - Ryu MIURA
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E84-B
IS - 7
JA - IEICE TRANSACTIONS on Communications
Y1 - July 2001
AB - Precise and quick multi-beam forming including null control will be one of the key technologies for the future satellite communication systems utilizing SDMA (Space Division Multiple Access) and DOA (Direction of Arrival) estimation. In order to realize the precise multi-beam forming, calibration procedure is indispensable since there are several unavoidable factors that degrade the multi-beam patterns of the array. Particularly amplitude and phase imbalance between RF circuits needs to be calibrated frequently and quickly when the array system exists in changeable environment since the imbalance easily occurs due to thermal characteristics of each RF circuit. This paper proposes a simple and high-speed remote calibration scheme compensating for amplitude and phase imbalance among RF circuits of a transmitting adaptive array antenna onboard satellite. This calibration is conducted at a remote station such as a gateway station on the ground in the satellite communication system, by utilizing the received signal including the temporally multiplexed orthogonal codes transmitted from the array antenna onboard satellite. Since the calibration factors for all the antenna elements can be simultaneously obtained by the parallel digital signal processing, calibration time can be drastically reduced. The accuracy of this calibration is estimated by simulation. Simulation results show that the amplitude imbalance among RF circuits can be suppressed within the range from -0.5 dB to +0.25 dB for the initial imbalance ranging from -2 dB to +3.5 dB, phase imbalance can be suppressed within the range of -3 deg. to +3 deg. for the initial imbalance ranging from -120 or +180 deg. by this method. The amplitude and phase deviations among the elements can be suppressed within 0.36 dB and 2.5 degrees, respectively, in 80% of probability. Simulation results also show that this calibration method is valid under the relatively bad carrier-to-noise conditions such as -10 dB at the receiver. Good improvement of the multi-beam patterns by this calibration is shown under the low carrier-to-noise ratio condition.
ER -