The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article évalue, au moyen d'expériences en laboratoire et sur le terrain, l'effet combiné du récepteur à diversité d'antennes adaptatives cohérentes (CAAAD) et du contrôle de puissance de transmission rapide (TPC) basé sur le rapport signal/interférence plus bruit de fond (SINR) afin d'améliorer les performances au-delà. celle de la diversité spatiale (SD) avec combinaison de rapport maximal (MRC) dans tous les canaux à rapport signal/puissance d'interférence (SIR) faible à élevé dans la liaison inverse W-CDMA. Bien que le récepteur CAAAD proposé précédemment comprenant un réseau d'antennes adaptatives basé sur le critère d'erreur quadratique moyenne minimale (MMSE) et un combineur Rake cohérent ait été très efficace pour supprimer les interférences dans les canaux à faible SIR (les interférences sont sévères), SD employant MRC dans les canaux à bruit limité (SIR élevé) a surpassé le CAAAD en raison de sa réception non corrélée des variations d'évanouissement dues à sa grande séparation d'antenne. Les résultats expérimentaux en laboratoire ont montré que l'énergie moyenne requise du signal de transmission par densité spectrale de bruit bit-à-fond (Eb/N0) avec le récepteur CAAAD utilisant un TPC rapide est inférieur à celui avec un récepteur SD sur une large plage de valeurs de fréquence Doppler maximales allant de fD = 5 Hz à 500 Hz dans un canal SIR faible à élevé. Les résultats des expériences sur le terrain ont également montré que la combinaison CAAAD et TPC rapide est un moyen puissant de réduire les interférences d'accès multiple (MAI) sévères provenant des utilisateurs à haut débit dans un environnement SIR faible à élevé et est plus efficace que l'utilisation du récepteur SD avec le même nombre d'antennes, c'est-à-dire que le BER mesuré a été amélioré d'environ un ordre de grandeur, lorsque la puissance d'émission relative de l'utilisateur souhaité était de 8 dB avec deux antennes au SIR moyen reçu à l'entrée d'antenne de -12 dB.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Shinya TANAKA, Atsushi HARADA, Taisuke IHARA, Mamoru SAWAHASHI, Fumiyuki ADACHI, "Combined Effect of Coherent Adaptive Antenna Array Diversity and SINR-Based Fast Transmit Power Control in W-CDMA Reverse Link" in IEICE TRANSACTIONS on Communications,
vol. E84-B, no. 3, pp. 425-434, March 2001, doi: .
Abstract: This paper evaluates through laboratory and field experiments the combined effect of the coherent adaptive antenna array diversity (CAAAD) receiver and signal-to-interference plus background noise ratio (SINR)-based fast transmit power control (TPC) in order to improve performance beyond that of space diversity (SD) with maximal ratio combining (MRC) in all low-to-high signal-to-interference power ratio (SIR) channels in the W-CDMA reverse link. Although the previously proposed CAAAD receiver comprising an adaptive antenna array based on the minimum mean square error (MMSE) criterion and a coherent Rake combiner was very effective in suppressing interference in low SIR (interference is severe) channels, SD employing MRC in noise limited channels (high SIR) outperformed the CAAAD because of its uncorrelated reception of fading variation due to its large antenna separation. The laboratory experimental results showed that the required average transmit signal energy per bit-to-background noise spectrum density (Eb/N0) with the CAAAD receiver using fast TPC is lower than that with an SD receiver over a wide range of maximum Doppler frequency values from fD = 5 Hz to 500 Hz in a low-to-high SIR channel. The results of the field experiments also showed that combining CAAAD and fast TPC is a powerful means to reduce severe multiple access interference (MAI) from high rate users in a low-to-high SIR environment and is more effective than using the SD receiver with the same number of antennas, i.e., the measured BER was improved by approximately one order of magnitude, when the relative transmit power of the desired user was 8 dB with two antennas at the average received SIR at the antenna input of -12 dB.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e84-b_3_425/_p
Copier
@ARTICLE{e84-b_3_425,
author={Shinya TANAKA, Atsushi HARADA, Taisuke IHARA, Mamoru SAWAHASHI, Fumiyuki ADACHI, },
journal={IEICE TRANSACTIONS on Communications},
title={Combined Effect of Coherent Adaptive Antenna Array Diversity and SINR-Based Fast Transmit Power Control in W-CDMA Reverse Link},
year={2001},
volume={E84-B},
number={3},
pages={425-434},
abstract={This paper evaluates through laboratory and field experiments the combined effect of the coherent adaptive antenna array diversity (CAAAD) receiver and signal-to-interference plus background noise ratio (SINR)-based fast transmit power control (TPC) in order to improve performance beyond that of space diversity (SD) with maximal ratio combining (MRC) in all low-to-high signal-to-interference power ratio (SIR) channels in the W-CDMA reverse link. Although the previously proposed CAAAD receiver comprising an adaptive antenna array based on the minimum mean square error (MMSE) criterion and a coherent Rake combiner was very effective in suppressing interference in low SIR (interference is severe) channels, SD employing MRC in noise limited channels (high SIR) outperformed the CAAAD because of its uncorrelated reception of fading variation due to its large antenna separation. The laboratory experimental results showed that the required average transmit signal energy per bit-to-background noise spectrum density (Eb/N0) with the CAAAD receiver using fast TPC is lower than that with an SD receiver over a wide range of maximum Doppler frequency values from fD = 5 Hz to 500 Hz in a low-to-high SIR channel. The results of the field experiments also showed that combining CAAAD and fast TPC is a powerful means to reduce severe multiple access interference (MAI) from high rate users in a low-to-high SIR environment and is more effective than using the SD receiver with the same number of antennas, i.e., the measured BER was improved by approximately one order of magnitude, when the relative transmit power of the desired user was 8 dB with two antennas at the average received SIR at the antenna input of -12 dB.},
keywords={},
doi={},
ISSN={},
month={March},}
Copier
TY - JOUR
TI - Combined Effect of Coherent Adaptive Antenna Array Diversity and SINR-Based Fast Transmit Power Control in W-CDMA Reverse Link
T2 - IEICE TRANSACTIONS on Communications
SP - 425
EP - 434
AU - Shinya TANAKA
AU - Atsushi HARADA
AU - Taisuke IHARA
AU - Mamoru SAWAHASHI
AU - Fumiyuki ADACHI
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E84-B
IS - 3
JA - IEICE TRANSACTIONS on Communications
Y1 - March 2001
AB - This paper evaluates through laboratory and field experiments the combined effect of the coherent adaptive antenna array diversity (CAAAD) receiver and signal-to-interference plus background noise ratio (SINR)-based fast transmit power control (TPC) in order to improve performance beyond that of space diversity (SD) with maximal ratio combining (MRC) in all low-to-high signal-to-interference power ratio (SIR) channels in the W-CDMA reverse link. Although the previously proposed CAAAD receiver comprising an adaptive antenna array based on the minimum mean square error (MMSE) criterion and a coherent Rake combiner was very effective in suppressing interference in low SIR (interference is severe) channels, SD employing MRC in noise limited channels (high SIR) outperformed the CAAAD because of its uncorrelated reception of fading variation due to its large antenna separation. The laboratory experimental results showed that the required average transmit signal energy per bit-to-background noise spectrum density (Eb/N0) with the CAAAD receiver using fast TPC is lower than that with an SD receiver over a wide range of maximum Doppler frequency values from fD = 5 Hz to 500 Hz in a low-to-high SIR channel. The results of the field experiments also showed that combining CAAAD and fast TPC is a powerful means to reduce severe multiple access interference (MAI) from high rate users in a low-to-high SIR environment and is more effective than using the SD receiver with the same number of antennas, i.e., the measured BER was improved by approximately one order of magnitude, when the relative transmit power of the desired user was 8 dB with two antennas at the average received SIR at the antenna input of -12 dB.
ER -